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Abstract

While quantum mechanics can accurately describe our universe, the equation governing
the quantum system is too complicated to be soluble through human analysis. To apply this
great theory to real world scenarios, such as in the investigation of electronic structure or in
the prediction of complex system in atomic scale, we have to resort to computational approach.
In this report, I will present a brief history in the development of computational quantum
mechanics. Then I will focus on two well-known approaches, the Fourier grid Hamiltonian
method and Quantum Monte Carlo. Fourier grid Hamiltonian method is accurate and general
with the cost of bad scalability, while Quantum Monte Carlo method can solve many-body
quantum system very efficiently under certain restriction. To have hands-on experience in
predecessor’s achievement, I have implemented these methods using C++ completely from
scratch. The codes are publicly available on GitHub. I have applied my implementation on
several real world situations. The results show well agreement with experimental and analytical
results. Furthermore, it can easily apply to convoluted situations where finding analytical
solution is strenuous and burdensome. Together, the results demonstrate the correctness and
the usefulness of computational quantum mechanics.
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1 Introduction

“The general theory of quantum mechanics is now almost complete, [...] the difficulty
is that the exact application of these laws leads to equations much too complicated
to be soluble. It therefore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed.”

— P.A.M. Dirac, 1929 [4].

As early as 1929, three years after the birth of quantum mechanics, P.A.M. Dirac observed that
the fundamental physical law describing the microscopic world is near it’s completion. However,
it is very difficult to exactly solve for the equation (the Dirac equation, or the Schrodinger equation,
in the non-relativistic region) even for a single-particle system. Because the power of physics
lies in it’s great prediction ability, it is very important to find approximation method to solve
for any realistic physical systems. In this project, I will take on P.A.M. Dirac’s great vision,
and introduce several achievements over the past 80 years. To gain better understanding to
predecessors’ accomplishment, I decided to write C++ codes that approaches the goal posed by
P.A.M. Dirac. I will introduce more on how to use my codes in the later content.

1.1 The Challenge We Face

In the following content, I will only consider the (general) Schrodinger’s equation, i.e. I will assume
all particles are moving at speed much lower than the light speed. This is applicable in many
fields, such as in chemistry, material science and solid-state physics as mentioned in Dirac’s paper
on many-electron system [4]. Particularly, we will consider the following equation under Dirac’s
notation:

Ĥ|ψ〉 = ih̄
∂

∂t
|ψ〉, (1)

where |ψ〉 is the complete description of our physical system (which can be single-body or many-
body) and Ĥ is the Hamiltonian operator. We can easily compare this to the canonical equation of
motion in classical mechanics:

∂H
∂q

= −dp
dt

,
∂H
∂p

=
dq
dt

, (2)

where q is the canonical coordinate and p is the canonical momentum.
Classically, for a system with s-dimensional canonical coordinate, we only need 2s real number

to store the entire information of the physical system, i.e. q, p. However quantum-mechanically, we
need a s-dimensional complex function to store the information of the physical system, the difficulty
increases drastically. The situation is even more strenuous, because in quantum mechanics,
knowing the evolution of physical state (or |ψ〉) is often not very interesting. We are generally more
interested in solving the following equation (the time-independent general Schrodinger equation):

Ĥ|ψ〉 = E|ψ〉, (3)

where E: the energy eigenvalue is not known beforehand and is fundamentally very important.
This problem is even more difficult than the previous one, because we have to deal with a (s-dim
complex function) x (s-dim complex function) eigenvalue problem.

1.2 A Little Bit of History

Even solving the 1D Schrodinger equations is difficult, so right after the discovery of the equation
in 1926, Wentzel, Kramers, and Brillouin developed the so-called WKB approximation (for details,
please see [18]) to approximately solve for the eigenstate and eigenenergy of 1D Schrodinger
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equations. This approximation is valid only when h̄ can assumed to be very small, so it is also
called the semi-classical approximation.

Another well-known approach with a similar flavor is also developed, the Rayleigh-Schrodinger
perturbation theory [19], again right after the advent of Schrodinger’s 1926 paper. In many systems,
the perturbation theory can be very successful and is used even till today. For example, in 2011, a
group of Japanese scientist [1] has calculated the electron’s magnetic moment using perturbation
theory up to tenth-order and found very good agreement with the experiment (to eleventh decimal
places).

However, perturbation method is invalid for many realistic systems, which happens quite
often in quantum chemistry. To handle non-perturbative system, several different theory for
designing accurate model have been proposed. These types of method have become increasingly
popular after the birth of electronic computer. And is now widely used in helping us design
drugs, superconductors, calculating the electronic structure of molecules, or predicting the phase
transition behavior.

Among the various computational methods, a popular and successful approach is known as
the density functional theory. It is used to calculate the ground state property of many-electron
system. The theory is built upon the two famous Hohenberg-Kohn theorem [10] proposed in 1964:

1. The ground state property of N-electron system is uniquely determined by the electron
density (which simplifies the 3N-dim wave function to a 3-dim real function).

2. The correct ground state electron density (satisfying the constraint that it’s integration over
space must equal to N) minimizes the energy functional (energy functional is the energy
expectation for the corresponding wave function).

The proof of the theorem is simple and straightforward (simply using reductio ad absurdum in the
original paper [10]), but the implication is very powerful.

In the next year, Walter Kohn continue to work on this subject and publish another ground-
breaking paper called the “Self-Consistent Equations Including Exchange and Correlation Effects”
[12], also known as the Kohn-Sham equation. Originally, the electrons will interact with each
other, thus the wave function can not be solved separately for different electrons. In the paper,
they showed that the N-electron ground state wave function can be constructed by the wave
function of N independent particles moving in an effective potential, the Kohn-Sham potential.
The computational simplification led to many great insights, which enables successors to design
essential tools for electronic materials and molecular structure (for more details see [16]). Even
after 50 years, density functional theory remains to be a useful and wide-used approach, e.g. see
last year’s publication on Physical Review Letter [14] or this year’s publication on Nature Review
Materials [11]. Due to his development of density functional theory, Kohn was awarded the 1998
Nobel prize in chemistry.1

1.3 Alternative Path to Fulfilling Dirac’s Vision

Despite the success of density functional theory, there are still applications where density functional
theory fails miserably. For example, due to the band-gap problem, density functional theory may
predict a number of known insulator (e.g., the Mott insulator) as metallic (see page 190 in [15]).
This breakdown is not because of the theory itself. The problem arises because we do not know
the exact form of Kohn-Sham potential, which have to approximated, e.g. using local density
approximation (LDA) or generalized gradient approximations (GGA). As noted in a publication
at Science in 2008 [3], a systematic approach for constructing the potential that are universally
applicable is a hard problem and has remained elusive.

1https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/
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As a results, methods that treat the problem more directly is desired, i.e. solving the quantum
mechanical equation directly without resorting to fictitious equation that require approximations
that sometimes work, but sometimes don’t. In this project, I will follow the more direct approach
to fulfill Dirac’s vision. The booming of this new line of work actually happens much after
the development of density functional theory. This may be due to the recent advancement of
computing power that makes the direct approach very useful and attractive. To summarize, I
will introduce the simple yet influential Fourier Grid Hamiltonian method in Section 2; the more
advanced Quantum Monte Carlo in Section 3; and gives concluding remarks in Section 4.

2 Fourier Grid Hamiltonian Method

Around 1980, as the computing power of electronic computer starts to take off, scientist begin
to apply direct method in solving low dimensional Schrodinger equation. Among them, a well-
known and influential method, called the Spectral method [6], is developed by Feit et al. in 1982
to solve for the time-dependent Schrodinger equation, which has now accumulated nearly 3,000
citations. Latter, in 1984 , Kosloff and Tal-Ezer [21] improved the original formulation to solve
the time-dependent Schrodinger equation (equivalent to propagating the wave function) more
accurately and efficiently, and renamed it as the Fourier method. Finally, in 1989, Marston et al.
proposed the Fourier Grid Hamiltonian Method [13] to solve the time-independent Schrodinger
equation (equivalent to finding the eigenfunctions and the corresponding eigenenergy).

2.1 Method Description

In the original paper [13], the authors only solve the 1D problem. I think 1D is too restricted, so
I have generalize the method to handle 2D problem (some care has to be taken). Furthermore, I
have applied a computational trick to reduce the time complexity of their original method, which
will be described later.

We first consider the 1D one-body Schrodinger equation, which can be written as:

Ĥ|ψ〉 ≡
( P̂2

2m
+ V(X̂)

)
|ψ〉 = E|ψ〉,

where P̂ is the momentum operator, and X̂ is the position operator. We now consider the position
eigenket and the momentum eigenket, denoted by

|x′〉 with X̂|x′〉 = x′|x′〉, 〈x′′|x′〉 = δ(x′′ − x′).

|k′〉 with P̂|k′〉 = h̄k′|k′〉, 〈k′′|k′〉 = δ(k′′ − k′).

The following useful identity relates the two eigenkets:

〈k′|x′〉 = 1√
2π

exp(−ik′x′).

Therefore we have

〈x|Ĥ|x′〉 = 〈x| P̂
2

2m
|x′〉+ 〈x|V(X̂)|x′〉,

=
∫ ∞

−∞
dk′

∫ ∞

−∞
dk′′〈x|k′〉〈k′| P̂

2

2m
|k′′〉〈k′′|x′〉+ V(x′)δ(x− x′),

=
∫ ∞

−∞
dk′

∫ ∞

−∞
dk′′

(h̄k′)2

2m
〈x|k′〉δ(k′ − k′′)〈k′′|x′〉+ V(x′)δ(x− x′),

=
∫ ∞

−∞
dk′

(h̄k′)2

2m
〈x|k′〉〈k′|x′〉+ V(x′)δ(x− x′),

=
1

2π

∫ ∞

−∞
dk′ Tk′ exp(ik′(x− x′)) + V(x′)δ(x− x′),
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where Tk′ is defined as (h̄k′)2

2m . Note that I used the closure relation in the second equality:∫ ∞

−∞
dk′|k′〉〈k′| = 1̂.

Also we have

Ĥ|ψ〉 = E|ψ〉 =⇒ 〈x|H|ψ〉 = E〈x|ψ〉 =⇒
∫ ∞

−∞
dx′〈x|Ĥ|x′〉ψ(x′) = Eψ(x),

where I have used the fact that 〈x|ψ〉 = ψ(x). Notice right hand side look very much like the
eigenvalue problem in standard linear algebra.

Let us now generalize everything into 2D, we would have

Ĥ =
P̂x

2
+ P̂y

2

2m
+ V(X̂, Ŷ),

and ∫ ∞

−∞
dx′

∫ ∞

−∞
dy′〈x, y|Ĥ|x′, y′〉ψ(x′, y′) = Eψ(x, y). (4)

Similarly, 〈x, y|Ĥ|x′, y′〉 can be expressed as

1
(2π)2

∫ ∞

−∞
dk′

∫ ∞

−∞
dl′ (Tk′ + Tl′) ei(k′(x−x′)+l′(y−y′)) + V(x′, y′)δ(x− x′)δ(y− y′), (5)

which can be derived similar to 1D, but using the following identities:

〈x′′, y′′|x′, y′〉 = δ(x′′ − x′)δ(y′′ − y′),

〈k′′, l′′|k′, l′〉 = δ(k′′ − k′)δ(l′′ − l′),

〈k′, l′|x′, y′〉 = 1
2π

exp(−i(k′x′ + l′y′)).

Before discretizing everything, a useful property of the desired eigenfunction is stated in Proposi-
tion 1.

Proposition 1. Eigenfunction can always taken to be real.

Proof. From Equation 5, we can see that 〈x, y|Ĥ|x′, y′〉 is always real, because V is a real function
and the infinite integral is also real. And since Ĥ is Hermitian, the eigenenergy will always be
a real number. Combining these with Equation 4, we can see that if ψ(x, y) satisfy the equation,
then Re[ψ(x, y)] and Im[ψ(x, y)] also satisfy the equation. Therefore we can always assume that
the desired eigenfunction is a real function.

Our next step is to discretize everything because computer can not really deal with infinite
dimensional objects. The idea is simply to consider a finite grid of points (for simplicity, I will
consider a uniform grid centered at the origin). Mathematically, it can be described as follows:

|x, y〉, ∀x, y ∈ R 7→ |xi, yj〉, ∀i, j ∈ {−n, ..., 0, ..., n}.

|k, l〉, ∀k, l ∈ R 7→ |ki, lj〉, ∀i, j ∈ {−n, ..., 0, ..., n}.

where xi = i∆x, yj = j∆x, ki = i∆k, lj = j∆k, ∀i, j. And N ≡ 2n + 1. Basically it is a N-by-N grid,
where N must be an odd number. Because the size of the grid is N∆x, the largest wave length is
N∆x, which is equivalent to saying the smallest wave number ∆k = 2π/N∆x. So we only have
two discretization parameters: n and ∆x. Under discretization, we also have to do the following
modification: ∫ ∞

−∞
7→

n

∑
i=−n

∆x, δ(xi − xj) 7→
1

∆x
δij.
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Therefore Equation 4 can be rewritten as

∆x2
n

∑
i=−n

n

∑
j=−n
〈xp, yq|Ĥ|xi, yj〉ψ(xi, yj) = Eψ(xp, yq).

If we consider ψ(xi, yj) as an N2-dim vector ~ψ, and regard ∆x2〈xp, yq|Ĥ|xi, yj〉 as an N2-by-N2

matrix [H], then the above equation is essentially an eigenvalue equation,

[H]~ψ = E~ψ.

The final ingredient would be to calculate the matrix element ∆x2〈xp, yq|Ĥ|xi, yj〉. One choice
is to directly discretize Equation 5. However, I found a modification that can improve numerical
stability giving more accurate energy eigenvalues. Instead of doing a double integral, we first
analytically perform one of the integration to yield

1
(2π)2

∫ ∞

−∞
dk′

∫ ∞

−∞
dl′ Tk′ ei(k′(x−x′)+l′(y−y′)) =

1
2π

∫ ∞

−∞
dk′ Tk′ ei(k′(x−x′))δ(y− y′).

Then we apply discretization using the right hand side when calculating kinetic energy contribu-
tion, so

〈xp, yq|Ĥ|xi, yj〉 =
1

2π

n

∑
m=−n

∆k Tkm ei(km(xp−xi))
1

∆x
δqj

+
1

2π

n

∑
m=−n

∆k Tkm ei(km(yq−yj))
1

∆x
δpi + V(xi, yj)

1
∆x2 δpiδqj.

(6)

Next we use the relation that ∆k = 2π/N∆x to obtain

∆x2〈xp, yq|Ĥ|xi, yj〉 =
1
N

n

∑
m=−n

Tkm (ei(km(xp−xi))δqj + ei(km(yq−yj))δpi) + V(xi, yj)δpiδqj.

Recall that Tk =
(h̄k)2

2m , so Tk = T−k, and we can use eix + e−ix = 2 cos(x) to get

∆x2〈xp, yq|Ĥ|xi, yj〉 =
1
N

n

∑
m=0

2Tkm (cos(km(xp − xi))δqj + cos(km(yq − yj))δpi)

+ V(xi, yj)δpiδqj.

(7)

Notice that a naive construction of [H] would require O((N2 × N2)× N) computations2, because
there are (N2 × N2) entries and each require roughly N computation if Equation 7 is explicitly
used. In the paper, they proposed to use FFT to speed up the process resulting in O(N4 log N).
However, I found that by a simple pre-computation we can decrease the total computations to
O(N4), and is actually much easier to implement than FFT. For more details, please see my C++
code FGH/FourierGridH.cpp.

2.2 Code Usage

My design principle is to be as easily understandable as possible. The main purpose is to give the
readers a more realistic experience to past achievements. Because for most people, coding things
out is very different than simply knowing the concept. You can find all the codes on GitHub3.

For Fourier grid Hamiltonian method, you can find all the codes in the FGH/ folder, including:

2I am using the big-O notation developed by Landau here.
3Or you can simply copy this link: https://goo.gl/gdJ3Rn
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Figure 1: Selected eigenstates for 2D SHO

1. FourierGridH.cpp: This is the main body for Fourier grid Hamiltonian method. The
method can solve for the eigenfunctions and eigen-energies of any desired potential. You
simply need to change the function: potential2D(). Some parameters can also be tuned
at the top few lines of the main() function.

2. Eigen/: To do efficient linear algebra operations, such as eigen-decomposition, I have used
the C++ library Eigen [9] in FourierGridH.cpp. It is self-contained, and you don’t need
to download any software (which is very convenient).

3. Plot_eigenstate.m: This is a Matlab code for visualizing the output from FourierGridH.cpp.
The output from FourierGridH.cpp is a lot of numbers that are hard to understand. There-
fore I wrote this Matlab code to help visualize the numbers.

4. RemoveWhiteSpace.m: I have export the visualization in Plot_eigenstate.m to png
files. However, there are some flaws in Matlab’s export functionality (it creates a lot of white
margin at the edge). This code is used to fix the flaws.

So after changing to your desired potential and parameters, you only need to type

g++ FourierGridH.cpp -o FourierGridH

to create the executable file FourierGridH. Then by typing

./FourierGridH

the eigen-energy will be outputted to the screen from ground state to more excited states. And a
file named top_eigenstates.txt storing the eigenfunctions will also be created. (the number
of states depends on your parameter) Now, to visualize your result, change the parameters in
Plot_eigenstate.m to be the same as FourierGridH.cpp. Then simply run the Matlab code.
A lot of interesting pictures will be created in the FGH/ folder, including the potential and the
beautiful excited energy eigenstates.

2.3 Some Results

In this subsection, I will present some results solved using my implementation. Let us first consider
a very simple situation: the 2D simple harmonic oscillator. This problem can be solved analytically,
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Figure 2: Potential visualization for SHO (left) and a special potential (right)

so it can serve as a check on whether the method is doing correctly or not. Recall that by using
ladder operator (for more details, see page 90 in [17]), we can find that the energy eigenvalues are

En,m = (n +
1
2
)h̄ω + (m +

1
2
)h̄ω = (n + m + 1)h̄ω, ∀n, m ∈N∪ {0},

where ω =
√

k/m. In my implementation, I am using k = m = h̄ = 1, and by running the code,
we find the first 10 energy eigenvalues to be

1.0000, 2.0000, 2.0000, 3.0000, 3.0000, 3.0000, 4.0000, 4.0000, 4.0000, 4.0000,

which agrees very well with the analytical solution.
In Figure 1, we present some selected eigenstates visualization using my Matlab implemen-

tation. (For the lowest 150 excited states, please refer to this dropbox folder4) Note that in
Section 2.1, we have prove that the eigenfunctions can always taken to be real. Therefore we can
use 1D color to visualize the wave function. Green color corresponds to the positive value, while
yellow is negative (black is zero). Due to the intrinsic grid discretization of wave function, the
original figure is very bulky, therefore I have perform some smoothing technique to create better
visualization. As you can see, even for the well-known simple harmonic oscillator, high energy
eigenstates can still look very strange and interesting.

The power of Fourier grid Hamiltonian method lies in it’s ability to handle arbitrary potential.
Here I consider a special potential similar to putting positive charge along x, y-axis and along r = 1
circle. The potential can be seen in Figure 2, where darker color means lower potential. Some
selected eigenstates can be seen in Figure 3 (For the lowest 150 excited states, please refer to this
dropbox folder5).

Before getting into more complicated method, let me summarize the advantage of using Fourier
grid Hamiltonian method.

1. It is very general: There are no restriction on the potential form, and it can solve for very
high energy eigenstate.

2. It is very accurate: The energy value it obtain is very accurate. And is basically the most
accurate method to date.

4Or you can simply copy this link: https://goo.gl/PP5vNZ
5Or you can simply copy this link: https://goo.gl/lnhQGO
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Figure 3: Selected eigenstates for the special potential

It looks like a very nice method, but the problem is it does not scale well. Notice that it solves the
problem by discretizing the s-dim wave function ψ into Ns grid points (in my 2D case, s = 2). So
the total time complexity is O(N3s) due to eigenvalue decomposition of a Ns × Ns matrix.

Now let us consider the electron structure of H2 molecule under Born-Oppenheimer approxi-
mation (i.e. nucleus is fixed), we would have s = 6. For a very coarse grid with N = 21, we would
need about 2118 ≈ 1024 computations to apply Fourier grid Hamiltonian method, which would
take about 3× 107 years for an ordinary PC to finish it. Even a super computer (about 1000000
faster than ordinary PC) would still take about 30 years to finish it. This is completely unacceptable.
Nevertheless, Fourier grid Hamiltonian method is very useful in low-dimensional setting.

3 Quantum Monte Carlo

In the previous section, we discussed about the Fourier grid Hamiltonian method. It is very
powerful, and can compute very high energy eigenstate that are hard to imagine before the
computation. However, the major drawback is that it has bad scalability when applying to many-
body system. In this section, I will present a more advanced technique, the "Quantum Monte
Carlo" method [2, 8], that is able to efficient solve for many-body system under certain condition.
The conditions are listed as follow, which will be used later to derive an efficient solver for the
difficult N-body problem.

1. We only solve for the ground state wave function: This condition is the same as the Nobel-
prize-winning density functional theory introduced in Section 1.2. Note that in many appli-
cations, people are mostly interested in the ground state property of the quantum system.
Thus it is valuable to consider only the ground state.

2. The ground state wave function has the same sign everywhere: In Proposition 1, we have
shown that the eigenfunction can always taken to be real. Furthermore, when ground state
is considered, the wave function generally has the same sign everywhere. For example, in
Hydrogen atom or in simple harmonic oscillator. But it is not the case for Fermion system,
because it’s wave function must be antisymmetric. Since it greatly complicates the problem, I
will not dive into this in detail.
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These are the condition for the standard Quantum Monte Carlo method, the "Diffusion Monte
Carlo" method that I will be presenting. There are other variants with different conditions and
different applications. For example, it is possible to extend the method to calculate the density
matrix of the quantum system in finite temperature [20].

3.1 Method Description

Recall that our story started from Dirac’s great vision in the difficulty and the usefulness of solving
the equation governing quantum systems. It is surprising that the origin of this method also
dates back to Dirac. The story begins at 1933, in another of his legendary paper, "The Lagrangian
in Quantum Mechanics" [5]. In Equation 9, page 68 (the fifth page of his paper), he made the
following mysterious remark:

(qt+dt|qt) corresponds to exp[iLdt/h̄], (8)

where qt is the canonical coordinates of the system in time t, and L is the classical Lagrangian
T − V. This is the core relation we will be using in developing quantum Monte Carlo method.
However, Dirac did not state clearly on what "corresponds to" mean and this relation was left
unnoticed until 1948.

About 15 years later, Richard Feynman accidentally encountered this interesting statement.
He was invigorated by it and later developed the very well known path integral formulation
of quantum mechanics in his 1948 paper: "Space-time approach to non-relativistic quantum
mechanics" [7]. The basic idea is that we can use an integration over infinitely many paths to
compute the time propagation of wave function. The contribution of each path is a unit modular
complex number,

eiS/h̄, where S =
∫
(T −U)dt is the classical action corresponding to the path.

Let us now present the correct equation for Relation 8. We consider an N particle system in
d-dimensional space, each with mass mi. The Hamiltonian operator is

Ĥ = K̂ + V̂ =
( N

∑
i=1

d

∑
j=1

P̂2
ij

2mi

)
+ V(r̂11, . . . , r̂Nd),

where P̂ij is the momentum operator on i-th particle’s j-th dimension, and r̂ij is the position operator
on i-th particle’s j-th dimension. In the following context, I will use a short hand notation for the
position of the N particles

~R = [~r1, . . . ,~rN ] ∈ RdN .

Then the correct form for Relation 8 based on Feynman’s path integral formulation is

ψ(~R, t + dt) = α
∫

d~R′ exp
( i

h̄
Ldt
)

ψ(~R′, t), (9)

where ψ is the N-body wave function, the integration is taken over the whole space and L =

T(~R, ~R′, dt)−V(~R) with

α = ∏
i,j

√
mi

2πh̄idt
and T(~R, ~R′, dt) = ∑

ij

1
2

mi

( rij − r′ij
dt

)2
.

Note that we are only considering straight lines rather than some arbitrary paths. This is because
for infinitesimal time interval, any path can be regarded as a straight line. For completeness, I have
presented my own derivation for Equation 9 in Appendix A.

With this powerful tool at hand, we are ready to dive into the idea of Quantum Monte Carlo
(QMC). The basic ingredients for this method are
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1. Propagation in Imaginary Time to Generate Ground State.

2. Wave Function as Unnormalized Probability Density Function.

3. Gaussian Random Walk due to Kinetic Energy Contribution.

4. Death and Birth Process due to Potential Energy Contribution.

In the following content, I will be adding the ingredients one-by-one to derive the intellectually
interesting QMC method. Along the way, I will refer to the two conditions presented in the
beginning of Section 3.

Let us first define the energy eigenfunctions to be φn(~R), ∀n = 0, 1, . . . , ∞, with their corre-
sponding energy eigenvalues E0 < E1 < E2 < . . . arranged in increasing order. By Sturm-Liouville
theory, we can decompose any initial wave function as

ψ(~R, 0) =
∞

∑
n=0

cnφn(~R).

By Schrodinger’s equation, we then have

ψ(~R, t) =
∞

∑
n=0

cnφn(~R) exp(− i
h̄

Ent). (10)

If we define τ = it, and propagate in τ, the imaginary time, rather than t, we obtain

ψ(~R, τ) =
∞

∑
n=0

cnφn(~R) exp(−En

h̄
τ) = exp(−E0

h̄
τ)

∞

∑
n=0

cnφn(~R) exp(−En − E0

h̄
τ).

Therefore, for sufficiently large τ, we find that

exp(
E0

h̄
τ)ψ(~R, τ)→ c0φ0(~R), (11)

only the ground state remains if c0 6= 0. Recall that this is our target, the ground state wave
function of the N-body quantum system. This is the basic idea of QMC’s first ingredient, also
known as the Wick rotation of time. Similarly, we can apply Wick rotation of time on Equation 9 to
obtain

ψ(~R, τ + dτ) =
(

∏
i,j

√
mi

2πh̄dτ

) ∫
d~R′ exp

(
− dτ

h̄
(
V(~R) + ∑

ij

1
2

mi

( rij − r′ij
dτ

)2))
ψ(~R′, τ), (12)

Note that due to the dt in T(~R, ~R′, dt), we now have the same sign for both T and V.
The next ingredient is to consider the wave function, a complex function, as an unnormalized

probability density function. This is not the same as Born’s interpretation of treating ψ∗ψ as the
probability density function. We are treating the wave function itself as the probability density
function. But why is such interpretation valid? Let us justify this interpretation by looking
at Equation 12. We see that everything is positive, therefore if ψ(~R′, τ) is positive everywhere,
so will ψ(~R′, τ + dτ). Thus by starting with a positive wave function, we can ensure that the
wave function at any later time (imaginary time) will always be positive everywhere. Hence
we can regard the wave function as an unnormalized probability density function with different
normalization constant at different time. This also leads to the second restriction for using QMC.
By Proposition 2, we see that c0 will vanish if the ground state wave function does not have the
same sign everywhere. And we require c0 6= 0 to find the ground state wave function, thus we
arrived at the second restriction stated at the beginning.

Proposition 2. If we start with a positive wave function ψ(~R, 0), then c0 6= 0 if and only if the ground
state wave function has the same sign everywhere.
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Proof. If the ground state has the same sign everywhere, we can see that

c0 =
∫

d~R φ∗0(~R)ψ(~R, 0) 6= 0.

For the other direction, if c0 6= 0, then by Equation 11 and using the fact that ψ(~R, τ) is positive
everywhere for all τ, we can see that the ground state wave function must have the same sign
everywhere.

If we regard ψ(~R, τ) as an unnormalized probability density function (PDF), we can sample
finite points ~Rk ∈ RdN from the wave function using the following PDF

ρ(~R) =
ψ(~R, τ)∫

d~R′ ψ(~R′, τ)
.

For sufficiently large τ, by applying Equation 11, we found that the finite points ~Rk are equivalent
to those sampled from the ground state wave function

ρ(~R) =
φ0(~R)∫

d~R′ φ0(~R′)
=

ψ(~R, τ)∫
d~R′ ψ(~R′, τ)

. (13)

This is because ψ(~R, τ) is proportional to φ0(~R) for sufficiently large τ. Thus the density of the
sampled points is the ground state wave function itself. So the problem now is how to sample from
ψ(~R, τ)? This is where path integral formulation comes into play. The process is like mathematical
induction, we assume that we are able to sample from ψ(~R, τ), then we construct a way to sample
from ψ(~R, τ + dτ). We first rewrite Equation 12 as follows

ψ(~R, τ + dτ) = exp(−dτ

h̄
V(~R))

∫
d~R′∏

i,j

1√
2πσi

exp
(
− 1

2

(
(rij − r′ij)/σi

)2)
ψ(~R′, τ), (14)

where σi =
√

h̄dτ/mi. We first neglect the contribution of V(~R) and focus on

ψ(~R, τ + dτ) =
∫

d~R′∏
i,j

1√
2πσi

exp
(
− 1

2

(
(rij − r′ij)/σi

)2)
ψ(~R′, τ). (15)

We can easily see that the right hand side contains a Gaussian distribution with standard deviation
σi for different dimensions (corresponding to different particles). A second look on the equation
give us a surprising way to sample points from ψ(~R, τ + dτ). We simply sample a point ~R from
ψ(~R, τ) and apply a one step Gaussian random walk to the sampled point. More precisely, we
sample a vector ∆~R ∈ RdN from a high-dimensional zero mean Gaussian distribution with the
correct covariance matrix (constructed using σi). Then the point ~R + ∆~R can be seen to be sampled
from ψ(~R, τ + dτ). This is the third ingredient of QMC, Gaussian random walk, due to the kinetic
energy contribution in the Hamiltonian.

For the final ingredient of QMC, we have to take the potential into account. Before doing so, let
us review the algorithm that we have designed up until now. At τ = 0, we sampled a finite number
of points (e.g. 10000 points) from an arbitrary positive function (e.g. Dirac’s delta function). To be
consistent with other literature, let’s call the points replicas. And at each time point, we apply one
step of Gaussian random walk on the 10000 replicas. Note that replicas do not exists physically,
they are propagating in imaginary time and use wave function itself as the probability density
function. Now we are ready to add in the final ingredient of QMC. In the previous algorithm, we
have neglected exp(− dτ

h̄ V(~R)) in Equation 14. The potential energy contribution can be added by
giving the replicas the ability to reproduce and die. At each time step, we do the following

1. Perform Gaussian random walk for each replicas independently.

12



2. Calculate the average value V of the potential V(~R) for the living replicas.

3. For each replica, sample a discrete value X from either

bexp(−dτ

h̄
(V(~R)−V))c or bexp(−dτ

h̄
(V(~R)−V))c+ 1,

with expectation value = exp(− dτ
h̄ (V(~R)−V)).

4. If X = 0, then the replica dies. If X = 1, the replica continue to lives. If X > 1, the replica
reproduce X− 1 offsprings at the same location and continue to live.

As you can see, replicas wandering at places with lower potential will reproduce more, while
replicas at higher potential will die with higher probability. Together, the density of the replicas is
proportional to exp(− dτ

h̄ (V(~R)−V))× (Equation 15). Because V is a constant, the density is also
proportional to Equation 14. Therefore we can regard the replicas to be sampled from ψ(~R, τ + dτ),
which is exactly the target we aim to do at the beginning. The use of V is only to ensure that the
replica number is roughly constant throughout the Quantum Monte Carlo process. However using
V can still lead to unstable number of replicas. After some trial and error, I found that instead of
using V, we can use the following

Ṽ ≡ V + K ∗
(

1− current number of replicas
initial number of replicas

)
,

where K is a constant roughly in between 1 ∼ 10. This does not change the underlying physics
since the use of V is also an arbitrary choice.

After the long journey, we finally arrived at the complete algorithm. Initially, we throw a large
number of replicas into the empty space. Then at each time step, we perform a Gaussian random
walk followed by a birth and death process for each replicas. After a large number of time steps,
the replicas can now be seen to be sampled from the ground state wave function. Then, we can start
accumulating the position of each replicas for the following time steps. The accumulated density
distribution is proportional to the ground state wave function. And all the ground state property
can be computed from the distribution. I found visualization to be a very good way to learn and
understand a subject. Therefore, I have designed a dynamical visualization, and have uploaded
to YouTube6. In the video, I demonstrated the QMC computation process when calculating the
ground state wave function for a wizard-hat potential. See Figure 4 for static visualization. This
visualization can be reproduced using my codes given in bump_potential folder.

As an example, we can calculate the ground state energy through the distribution of the replicas.
After propagating for a few thousands of time steps (so ground state is obtained), E0 is simply the
average of the potential V(~R) for the living replicas. This procedure can be justified by Proposition
3 and Equation 13.

Proposition 3. Let K be the number of living replicas, each with position ~Rk, then

1
K ∑

k
V(~Rk) ≈

∫
V(~R)

φ0(~R)∫
φ0(~R′)d~R′

d~R =

∫
V(~R) φ0(~R)d~R∫

φ0(~R′)d~R′
= E0.

Proof. Since φ0 is the ground state wave function,

E0φ0(~R) =
(

∑
i,j
− h̄2

2mi

∂2

∂r2
ij
+ V(~R)

)
φ0(~R).

=⇒
∫

E0φ0(~R)d~R =
∫ (

∑
i,j
− h̄2

2mi

∂2

∂r2
ij
+ V(~R)

)
φ0(~R)d~R.

6Or you can simply copy this link: https://youtu.be/tgJXdQFXmN0
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Figure 4: Visualization of Quantum Monte Carlo calculation on a wizard-hat potential.

Let us suppose that ∂
∂rij

φ0(~R) is zero if any coordinate is infinity, which is physically correct when
considering bound system. Therefore

∑
i,j

∫ ∞

−∞
· · ·

∫ ∞

−∞
− h̄2

2mi

∂2

∂r2
ij

φ0(~R)dr11 . . . drNd = 0.

Thus we have
E0

∫
φ0(~R)d~R =

∫
V(~R) φ0(~R)d~R.

3.2 Code Usage

Similar to Section 2.2, the codes are publicly available on GitHub7. The codes for QMC can be
found in QMC/ folder. QMC is very versatile, it can handle different number of particles in any
dimensional space. Thus different visualization method has to be used accordingly. Some of the
problems are even very hard to visualize, for example three particles in 3D SHO. Therefore I have
created several different folders, each corresponds to a different situation.

The basic usage is very simple, which holds for all the folders. In the terminal, simply type

g++ -std=c++0x QMC.cpp -o QMC; ./QMC

It will automatically compile and run. After waiting several seconds, the ground state energy will
be shown on the screen. Two txt files will be created, walkerN.txt stores the number of replicas
in each time step, and QMC_system.txt stores the position ~R of each replica at each time step.
For the format of QMC_system.txt, please see the function void export_QMC_system()
in QMC.cpp. If Plot_QMC.m is available in the folder, you can run it in Matlab to create a
visualization of the results in QMC_system.txt.

3.3 Some examples

Let me now present some examples obtain using my code QMC.cpp. I have calculated the ground
state energy for three different scenarios: (1) three particles in 3D simple harmonic oscillator; (2)

7Or you can simply copy this link: https://goo.gl/gdJ3Rn
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Table 1: Comparison of my QMC calculation with analytical or experimental results.

Scenario Simulated ground state energy True ground state energy
3 Particles in 3D SHO 4.498019± 0.028470 h̄ω 9 ∗ 1

2 h̄ω

Hydrogen Atom −13.755569± 0.253150 eV −13.606 eV
Hydrogen Molecule −31.957334± 0.423355 eV −31.675 eV8

hydrogen atom; (3) hydrogen molecule. The ground state energy for these scenarios are known
through analytical calculation or experimental measurement. A comparison between the QMC
computation and the known ground state energy is shown in Table 1. We can see that the simulated
results agree well with the true ground state energy using only a few thousands of replicas. Note
that for three particles in 3D SHO, we would have a 9D wave function, which can not be solved by
Fourier grid Hamiltonian method, but can easily be solve using QMC.

To demonstrate the power of QMC, I have also designed some artificial molecules. I placed
the nuclei at certain places with an electron orbiting around each nucleus. I then used the Born-
Oppenheimer approximation to calculate the wave function of the electrons. Finally, I computed
the electron density iso-surface in Matlab. The visualizations are shown in Figure 5. I have
visualized two iso-surface for each artificial molecule, the lower density is colored grey, while the
higher density is colored blue. It should be clear, where the nuclei are placed. To reproduce the
results, please refer to folders sqaure_molecule/ and tetrahedron_molecule/.

An important note is that even though I refer to them as electrons and nuclei, it only means
their interaction potential follows the same form as electrons and nuclei. The electrons are not
treated as Fermions in this simulation. They are actually electron-like Bosons. It is actually very
difficult to use quantum Monte Carlo method in Fermion system. The problem is deeply rooted in
any Quantum Monte-Carlo based approach (see [22]).

Figure 5: Visualization of the density iso-surface of artificial molecules.

4 Conclusion

Starting from Dirac’s prophetic vision, we have walk through two well-known methods to solve
any quantum system. The first method, Fourier grid Hamiltonian method is very powerful and
accurate but is only applicable for small system. However, as human has strong analytical ability,

8The value is obtained from http://www.millsian.com/summarytables/SummaryTables022709S.pdf
through experimental measurement.
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we are able to manually reduce the dimensionality of the system. Then the reduced system can
be solved very accurately using FGH. As a result, this straightforward method has continue to
contribute in real world applications even till now.

On the other hand, quantum Monte-Carlo method can easily scale to multi-particle system. The
beauty of this method is that it is embarrassingly parallel, if you have 1000 cores, you can easily
speed it up to ≈ 1000 times. In many parallel algorithms, we often only gain ≈ 500 times speed-up
due to communication cost between different cores. As there is no free lunch, the computational
benefit comes with certain restrictions. The first restriction is that it can only calculate ground
state property. It is favorable if we can remove this restriction and scientists have continue to
pursue in this direction. However, for the second restriction, it is basically impossible to apply
QMC on Fermion system. It has been shown theoretically that solving Fermion system using
QMC is NP-hard, i.e. we would need a non-deterministic Turing machine to solve the problem
in polynomial time (see [22]). Nevertheless the theoretical results holds only to standard QMC.
For example, density functional theory has already been successfully apply to Fermion system.
It would be very interesting if we can combine these two methods to obtain a more powerful
computational algorithm to fulfill Dirac’s vision.
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Appendices

A Derivation of N-Body Path Integral Formulation

For completeness, I will present my own derivation of Feynman’s path integral formulation for
N-body systems in d-dimensional space using simple ideas. In the following context, I will use a
short hand notation for the position of the N particles

~R = [~r1, . . . ,~rN ] ∈ RdN .

Similar to 1D case, we have the following completeness relation,∫
|~R〉〈~R|d~R = 1̂, (16)

where the integral is taken over the entire space.
By using general Schrodinger’s equation 2, we have

Ĥ|ψ, t〉 = ih̄
|ψ, t + dt〉 − |ψ, t〉

dt
=⇒ |ψ, t + dt〉 = (1̂− i

h̄
Ĥdt)|ψ, t〉.

We then decompose Hamiltonian to kinetic and potential contributions, Ĥ = K̂ + V̂, thus

1̂− i
h̄

Ĥdt = 1̂− i
h̄
(K̂ + V̂)dt = (1̂− i

h̄
V̂dt)(1̂− i

h̄
K̂dt),

by neglecting second order infinitesimal quantity dt2. Therefore we have

〈~R|ψ, t + dt〉 = 〈~R|(1̂− i
h̄

V̂dt)(1̂− i
h̄

K̂dt)|ψ, t〉.

Using the natural assumption that V̂ depends only on ~R, note that this also includes interaction
force between different bodies, we have

(1̂ +
i
h̄

V̂dt)|~R〉 =(1 +
i
h̄

V(~R)dt)|~R〉 =⇒

〈~R|ψ, t + dt〉 = (1− i
h̄

V(~R)dt)〈~R|(1̂− i
h̄

K̂dt)|ψ, t〉.

Neglecting the second order infinitesimal quantity dt2 again, we get

〈~R|ψ, t + dt〉 = e−
i
h̄ V(~R)dt〈~R|e− i

h̄ K̂dt|ψ, t〉. (17)
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Now we only need to focus on the kinetic part. Using Equation 16, we have

〈~R|e− i
h̄ K̂dt|ψ, t〉 =

∫
d~R′〈~R|e− i

h̄ K̂dt|~R′〉〈~R′|ψ, t〉. (18)

Next we need to calculate 〈~R|e− i
h̄ K̂dt|~R′〉. The first observation is that

K̂ =
N

∑
i=1

d

∑
j=1

P̂2
ij

2mi
=⇒ e−

i
h̄ K̂dt =

∫
d~Pd~P′|~P′〉〈~P′| exp(− i

h̄ ∑
ij

P̂2
ij

2mi
)|~P〉〈~P|,

where ~P is a short-hand notation for the momentum of the N particles

~P = [~p1, . . . ,~pN ] ∈ RdN .

Because |~P〉 is the eigenstate for P̂ij, ∀i = 1 · · ·N, j = 1 · · · d, we have

e−
i
h̄ K̂dt =

∫
d~P|~P〉 exp(− i

h̄ ∑
ij

P2
ij

2mi
)〈~P|.

Recalling that

〈~R|~P〉 = 〈~r1, . . . ,~rN |~p1, . . . ,~pN〉 =
1

√
2πh̄

Nd exp(
i
h̄ ∑

ij
pijrij),

we get

〈~R|e− i
h̄ K̂dt|~R′〉 = 1

(2πh̄)Nd

∫
d~P exp(− i

h̄ ∑
ij

P2
ij

2mi
+

i
h̄ ∑

ij
pij(rij − r′ij)).

After some simple integration (since we can treat all i, j independently), we obtain

〈~R|e− i
h̄ K̂dt|~R′〉 = 1

(2πh̄)Nd ∏
i,j

√
2πh̄mi

idt
exp

( i
h̄

dt · 1
2

mi

( rij − r′ij
dt

)2)
.

With some reorganization, we get

〈~R|e− i
h̄ K̂dt|~R′〉 = ∏

i,j

√
mi

2πh̄idt
exp

( i
h̄

dt · 1
2

mi

( rij − r′ij
dt

)2)
.

Notice that the phase in the exponential is proportional to the classical kinetic energy times dt.
Thus we can rewrite them as

〈~R|e− i
h̄ K̂dt|~R′〉 = α exp

( i
h̄

dt · T(~R, ~R′, dt)
)

,

where we use the following definitions

α = ∏
i,j

√
mi

2πh̄idt
and T(~R, ~R′, dt) = ∑

ij

1
2

mi

( rij − r′ij
dt

)2
.

Combining with Equation 17, 18, we get

〈~R|ψ, t + dt〉 = α
∫

d~R′ exp
( i

h̄
dt · (T(~R, ~R′, dt)−V(~R))

)
〈~R′|ψ, t〉. (19)

This is the infinitesimal path integral formulation I have been using in the main text. We can use
the same derivation on |ψ, t + dt〉 again to obtain |ψ, t + 2dt〉. And by applying infinite many times,
we arrive at the original finite time path integral formulation.

〈~R f |ψ, t f 〉 ∝
∫

all path ending at ~R f

D[~R(t)] exp
( i

h̄

∫ t f

ti

dt(T −V)
)
〈~Ri|ψ, ti〉,

where ~Ri is the starting configuration (not fixed) of the path.
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