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Abstract

In this note, we give a simple construction of pseudorandom unitaries that can be
implemented in poly log depth on all-to-all-connected quantum circuits consisting of two-
qubit gates assuming hardness of Learning with Errors (LWE).

The purpose of this note is to provide a fix to pseudorandom unitary results based on the Luby-
Rackoff construction for creating pseudorandom permutation 𝑃 from pseudorandom functions.
This note is part of an ongoing research project studying the minimum time to form strong pseu-
dorandom unitaries and its connection to scrambling. This note is intended to remain unpublished,
with the majority of its content to be incorporated into a forthcoming manuscript.

1 A known issue in the pseudorandomness literature

We begin by describing a known issue in the pseudorandomness literature.
In Section 2.8 of Ref. [1], the authors use the claim that the 4-round Luby-Rackoff construction

forms a quantum-secure pseudorandom permutation [2] to show that quantum-secure in-place pseudo-
random permutations 𝑃 can be constructed in QNC1

𝑓 assuming the quantum hardness of learning with
errors (LWE). From this result, one immediately obtain that the 𝑃𝐹𝐶 construction for pseudorandom
unitaries proposed in [3] can be created in QNC1

𝑓 assuming hardness of LWE.
Unfortunately, the claim that 4-round Luby-Rackoff construction forms a quantum-secure pseu-

dorandom permutations [2] contain flaws in the proof; see Footnote 3 of [4]. Furthermore, even if
the flaws in [2] are fixed, Ref. [2] studied the XOR pseudorandom permutations rather than the in-
place pseudorandom permutations. The quantum security of XOR pseudorandom permutations, with
query only to the forward direction but not the inverse, do not imply the quantum security of in-place
pseudorandom permutations. As a result, it is unknown if pseudorandom unitaries can be created in
QNC1

𝑓 assuming hardness of LWE.

The authors thank Daniel Liang for raising this important caveat in the pseudorandomness liter-
ature. Daniel Liang has learned these issues from Soumik Ghosh.

2 A simple construction of pseudorandom unitaries

Let 𝑛 be the number of qubits and 𝑁 := 2𝑛. We begin by defining the following components:

• 𝑓0 : {0, 1}𝑛 → {1,−1}, a random function mapping 𝑛-bit strings to random binary phase.

• 𝑓1, 𝑓2 : {0, 1}𝑛/2 → {0, 1}𝑛/2, two independent random functions operating on (𝑛/2)-bit strings.
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2.1 Feistel network

Our construction utilizes a simple variant of the Feistel network, also known as the Luby-Rackoff
construction. For a function 𝑓 , we define the Left and Right Luby-Rackoff construction as follows:

L𝑓 (𝑥𝐿‖𝑥𝑅) := (𝑥𝐿 ⊕ 𝑓(𝑥𝑅))‖𝑥𝑅, (2.1)
R𝑓 (𝑥𝐿‖𝑥𝑅) := 𝑥𝐿‖(𝑥𝑅 ⊕ 𝑓(𝑥𝐿)), (2.2)

where 𝑥 = 𝑥𝐿‖𝑥𝑅 ∈ {0, 1}𝑛, and ‖ denotes bitstring concatenation.

2.2 Quantum oracles

We define the following 𝑛-qubit quantum oracles:

𝒪𝑓0 :=
∑︁

𝑥∈{0,1}𝑛
𝑓0(𝑥) |𝑥⟩⟨𝑥| , (2.3)

𝒪L,𝑓 :=
∑︁

𝑥∈{0,1}𝑛
|L𝑓 (𝑥)⟩⟨𝑥| , (2.4)

𝒪R,𝑓 :=
∑︁

𝑥∈{0,1}𝑛
|R𝑓 (𝑥)⟩⟨𝑥| . (2.5)

2.3 Construction

Let 𝐺 be an 𝑛-qubit random unitary sampled independently from a unitary 2-design, such as a random
Clifford circuit. Our 𝑛-qubit pseudorandom unitary 𝑈 is constructed as follows:

𝑈 := 𝒪R,𝑓2 · 𝒪𝑓0 · 𝒪L,𝑓1 ·𝐺. (2.6)

This constructions satisfies the following when 𝑓0, 𝑓1, 𝑓2 are fully random functions.

Theorem 1 (Indistinguishability). Let 𝑛 be the number of qubits. Any algorithm 𝒜 that queries an
𝑛-qubit unitary 𝑈 for 𝑡 = 2𝑜(𝑛) times can only distinguish between (1) 𝑈 = 𝒪R,𝑓2 · 𝒪𝑓0 · 𝒪L,𝑓1 ·𝐺 and
(2) 𝑈 is a Haar-random unitary with a negligible probability.

Assuming quantum subexponential hardness of LWE, we can take the functions 𝑓0, 𝑓1, 𝑓2 to be
pseudorandom functions secure against subexponential-time quantum adversary. Furthermore, as
shown in Ref. [5], the classical functions 𝑓0, 𝑓1, 𝑓2 can all be implemented using log-depth classical
circuits NC1. Hence, the 𝑛-qubit oracles 𝒪𝑓0 ,𝒪L,𝑓1 and 𝒪R,𝑓2 can all be implemented in QNC1

𝑓 ⊆ QNC.
Together, the 𝑛-qubit unitary 𝑈 can be implemented in QNC, i.e., poly log 𝑛 depth quantum circuits.
When instantiated with pseudorandom function, Theorem 1 implies that 𝑈 is a pseudorandom unitary
secure against subexponential-time quantum adversary.

3 Preliminaries

For completeness, the Preliminaries section is adapted from our work proving the conjecture regarding
the existence of pseudorandom unitaries [6].
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3.1 Notation

For simplicity, we consider the number of qubits 𝑛 to be even. We note that our results naturally
generalize to odd 𝑛 by considering left side to have one more bit than the right side similar to how
Feistel network handles odd-size bitstrings.

• Throughout this paper, we write 𝑁 := 2𝑛, where 𝑛 represents the number of qubits.

• Let [𝑁 ] := {1, . . . , 𝑁} denote the set of integers from 1 to 𝑁 .

• We identify [𝑁 ] with {0, 1}𝑛 by associating each integer 𝑖 ∈ [𝑁 ] with the string 𝑥 ∈ {0, 1}𝑛
corresponding to the binary representation of 𝑖− 1.

• For any integer 1 ≤ 𝑡 ≤ 𝑁 , let [𝑁 ]𝑡dist denote the set of length-𝑡 sequences of distinct integers
from 1 to 𝑁 , i.e.,

[𝑁 ]𝑡dist := {(𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡 : 𝑥𝑖 ̸= 𝑥𝑗 for all 𝑖 ̸= 𝑗}. (3.1)

• For 𝑡 = 0, [𝑁 ]𝑡dist := {()} is a set with a single element () denoting a length-0 sequence.

• For a pure state |𝜓⟩, we sometimes denote 𝜓 as the density matrix |𝜓⟩⟨𝜓|.

• We identify [𝑁1/2] with {0, 1}𝑛/2 by associating each integer 𝑖 ∈ [𝑁1/2] with the string 𝑥 ∈
{0, 1}𝑛/2 corresponding to the binary representation of 𝑖− 1.

• Let 𝑥 ∈ {0, 1}𝑛 be an 𝑛-bit string. We define:

– 𝑥𝐿 := 𝑥[1 : 𝑛/2], (the left half of 𝑥, i.e., the first 𝑛/2 bits)
– 𝑥𝑅 := 𝑥[𝑛/2 + 1 : 𝑛], (the right half of 𝑥, i.e., the last 𝑛/2 bits)

such that 𝑥 = 𝑥𝐿‖𝑥𝑅, where ‖ denotes concatenation.

• Given a set 𝑋 = {𝑥1, . . . , 𝑥𝑡} with 𝑥𝑖 ∈ {0, 1}𝑛. We define 𝑋𝐿 := {𝑥1,𝐿, . . . , 𝑥𝑡,𝐿} to be the set
of the left half strings and 𝑋𝑅 := {𝑥1,𝑅, . . . , 𝑥𝑡,𝑅} to be the set of the right half strings.

• Given an 𝑛-qubit register A. We denote register AL to be the left half of A, which consists of
𝑛/2 qubits, and AR to be the right half of A.

3.2 Oracle adversary

In the context of quantum cryptography, we often analyze the security of systems against adversaries
with oracle access. We define such oracle adversaries as follows:

Definition 1 (Oracle adversary). An oracle adversary 𝒜 is a quantum algorithm that makes queries
to an oracle 𝒪 that acts on the first 𝑛 qubits of the adversary’s space, which we call the A register.
The adversary also has an 𝑚-qubit ancillary space, which we call the B register. A 𝑡-query adversary
𝒜 specified by a 𝑡-tuple of unitaries (𝐴1,AB, . . . , 𝐴𝑡,AB). The adversary’s view after 𝑡 queries is:

|𝒜𝒪𝑡 ⟩AB :=

𝑡∏︁
𝑖=1

(︁
𝒪A ·𝐴𝑖,AB

)︁
|0⟩AB . (3.2)

Here, 𝒪 represents the 𝑛-qubit oracle, and 𝐴𝑖,AB is the unitary operation applied by the adversary
between the (𝑖− 1)-th and 𝑖-th oracle queries. For an arbitrary 𝑡, we denote as |𝒜𝒪⟩AB.

The adversary’s view corresponds to the entire state of the adversary’s system after making 𝑡
queries to the oracle.
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3.3 Pseudorandom unitaries

A pseudorandom unitary is a unitary operation that can be efficiently implemented but is computa-
tionally indistinguishable from a Haar-random unitary. This notion is formalized in [3, 7, 8] focusing
on polynomial-time adversary. Here, we present a definition of pseudorandom unitary secure against
𝑡(𝑛)-time adversaries. In some applications, e.g., in proving the hardness of recognizing topological
phases of matter [9], we would like consider pseudorandom unitary secure against subexponential-time
adversary, which will be covered by the following definition.

Definition 2 (Pseudorandom unitary secure against 𝑡(𝑛)-time adversary). A sequence {𝒰𝑛}𝑛∈N of
distributions over 𝑛-qubit unitary 𝒰𝑛 = {𝑈key}key∈𝒦𝑛 with the key space 𝒦𝑛 is a pseudorandom unitary
secure against any 𝑡(𝑛)-time adversary if it satisfies the following.

• Efficient computation: There exists a poly(𝑛)-time quantum algorithm that implements the
𝑛-qubit unitary 𝑈key for all key ∈ 𝒦𝑛.

• Indistinguishability from Haar: Any oracle adversary 𝒜 that runs in time ≤ 𝑡(𝑛), queries
an 𝑛-qubit oracle 𝒪 for any number of times, and measures a two-outcome observable 𝐷𝒜 with
eigenvalues {0, 1} after the queries satisfies⃒⃒⃒⃒

E
𝒪←𝒰𝑛

Tr
(︀
𝐷𝒜 · |𝒜𝒪⟩⟨𝒜𝒪|AB

)︀
− E
𝒪←𝜇Haar

Tr
(︀
𝐷𝒜 · |𝒜𝒪⟩⟨𝒜𝒪|AB

)︀⃒⃒⃒⃒
≤ negl(𝑛), (3.3)

where 𝜇Haar is the Haar measure and negl(𝑛) denotes any negligible function.

The difference between the observable expectation value on the adversary’s view after querying 𝑛-qubit
oracle 𝒪 sampled from 𝒰𝑛 and from 𝜇Haar is the advantage of the adversary 𝒜.

This definition captures several important aspects of pseudorandom unitaries. The first condition
Efficient computation ensures that each unitary in the family can be implemented efficiently, i.e.,
with a quantum circuit of polynomial size. This is crucial for practical applications in quantum
computing and cryptography. The second condition Indistinguishability from Haar formalizes the
notion that no efficient quantum algorithm (adversary) can distinguish between a unitary drawn
from the pseudorandom family and a Haar-random unitary. This is quantified by the probability of
outputting 1 after measuring the observable 𝐷𝒜 after the queries.

3.4 The Haar measure and unitary 𝑡-designs

The Haar measure over the unitary group is defined below.

Definition 3 (Haar measure). Given the number of qubits 𝑛, the Haar measure over the 𝑛-qubit
unitary group 𝑈(2𝑛) is the unique probability measure 𝜇 on 𝑈(2𝑛) that is:

1. Left-invariant: For any measurable set 𝑆 ⊆ 𝑈(2𝑛) and any 𝑉 ∈ 𝑈(2𝑛), 𝜇(𝑉 𝑆) = 𝜇(𝑆).

2. Right-invariant: For any measurable set 𝑆 ⊆ 𝑈(2𝑛) and any 𝑉 ∈ 𝑈(2𝑛), 𝜇(𝑆𝑉 ) = 𝜇(𝑆).

3. Normalized: 𝜇(𝑈(2𝑛)) = 1.

The Haar measure provides a notion of uniform distribution over the unitary group.

Because a random unitary sampled according to the Haar measure requires exponential many
gates to implement, one typically works with distributions that only matches the first 𝑡 moments of
the Haar measure. Such distributions are known as unitary 𝑡-designs. The formal definition of (exact)
unitary 𝑡-design is given as follows.
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Definition 4 (Unitary 𝑡-design). Given the number of qubits 𝑛, a distribution 𝒰 on 𝑛-qubit unitaries
is an exact unitary 𝑡-design if

E
𝑈∼𝒰

[𝑈⊗𝑡 ⊗ 𝑈 †,⊗𝑡] =

∫︁
𝑈(2𝑛)

𝑈⊗𝑡 ⊗ 𝑈 †,⊗𝑡𝑑𝜇(𝑈), (3.4)

where 𝜇 is the Haar measure over the unitary group 𝑈(2𝑛).

To formally define symmetric subspace, we need to define permutation operators. Permutation
operators rearrange the subsystems of a quantum state according to a given permutation 𝜋.

Definition 5 (Permutation operator). For any permutation 𝜋 ∈ Sym𝑡, let 𝑆𝜋 be a unitary that acts
on (C𝑁 )𝑡 as follows:

𝑆𝜋 : |𝑥1, . . . , 𝑥𝑡⟩ ↦→ |𝑥𝜋−1(1), . . . , 𝑥𝜋−1(𝑡)⟩ . (3.5)

3.5 Twirling channel

Twirling channels are used to average quantum states or operations over a set of unitary transfor-
mations, effectively creating a more symmetric or invariant representation. In this subsection, we
focus on the two-fold twirling channel, which is defined using unitary 2-designs. Unitary 2-designs
are distributions over unitary operators that reproduce the statistical properties of the full unitary
group up to the second moment.

We begin by defining the two-fold twirling channel.

Lemma 3.1 (2-fold twirling channel for unitary 2-design; [10, 11]). Let 𝒰 be a unitary 2-design on a
𝑁 -dimensional Hilbert space ℋ. The two-fold twirling channel 𝒯2 with respect to 𝒰 is defined as:

𝒯2(𝑋) = E
𝑈←𝒰

[(𝑈 † ⊗ 𝑈 †)𝑋(𝑈 ⊗ 𝑈)] (3.6)

where 𝑋 is an operator on ℋ⊗ℋ. The action of 𝒯2 on 𝑋 can be expressed as:

𝒯2(𝑋) =
2

𝑁(𝑁 + 1)
Tr(Πsym𝑋) ·Πsym +

2

𝑁(𝑁 − 1)
Tr(Πasym𝑋) ·Πasym, (3.7)

where Πsym = 1
2(Id + Swap) and Πasym = 1

2(Id − Swap) are the projectors onto the symmetric and
antisymmetric subspaces respectively and Swap is the swap operator.

Notation 1 (Half-equality projector). We define the following half-equality projectors Πeq,L
AB ,Πeq,R

AB
over two 𝑛-qubit registers A,B,

Πeq,L
AB :=

∑︁
𝑥∈[𝑁1/2]

|𝑥⟩⟨𝑥|AL
⊗ IdAR

⊗ |𝑥⟩⟨𝑥|BL
⊗ IdBR

, (3.8)

Πeq,R
AB :=

∑︁
𝑥∈[𝑁1/2]

IdAL
⊗ |𝑥⟩⟨𝑥|AR

⊗ IdBL
⊗ |𝑥⟩⟨𝑥|BR

. (3.9)

Lemma 3.2 (Twirled half-equality projectors). Let 𝒰 be a unitary 2-design on an 𝑛-qubit Hilbert
space ℋ, where 𝑁 = 2𝑛. We have

E
𝑈←𝒰

[(𝑈 †A ⊗ 𝑈 †B)Π
eq,R
AB (𝑈A ⊗ 𝑈B)] =

𝑁3/2 − 1

𝑁2 − 1
IdAB +

𝑁 −𝑁1/2

𝑁2 − 1
SwapAB . (3.10)
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Proof. We begin by applying the twirling channel in Lemma 3.1 to Πeq,R:

𝒯2(Πeq,R) =
2

𝑁(𝑁 + 1)
Tr
(︁
ΠsymΠeq,R

)︁
·Πsym +

2

𝑁(𝑁 − 1)
Tr
(︁
ΠasymΠeq,R

)︁
·Πasym (3.11)

To evaluate this, we need to calculate Tr
(︀
ΠsymΠeq,R

)︀
and Tr

(︀
ΠasymΠeq,R

)︀
:

Tr
(︁
ΠsymΠeq,R

)︁
=

1

2
Tr
(︁
(Id+ Swap)Πeq,R

)︁
=

1

2
(𝑁3/2 +𝑁) (3.12)

Tr
(︁
ΠasymΠeq,R

)︁
=

1

2
Tr
(︁
(Id− Swap)Πeq,R

)︁
=

1

2
(𝑁3/2 −𝑁) (3.13)

Substituting these values into the twirling channel formula:

𝒯2(Πeq,R) =
2

𝑁(𝑁 + 1)
· 𝑁

3/2 +𝑁

2
·Πsym +

2

𝑁(𝑁 − 1)
· 𝑁

3/2 −𝑁

2
·Πasym (3.14)

=
𝑁1/2 + 1

𝑁 + 1
Πsym +

𝑁1/2 − 1

𝑁 − 1
Πasym =

𝑁3/2 − 1

𝑁2 − 1
Id+

𝑁 −𝑁1/2

𝑁2 − 1
Swap . (3.15)

This completes the proof of this lemma.

3.6 Variable-length registers

We give a formal definition of a variable-length register R. For every positive integer 𝑡 ≥ 0 let R(𝑡) be
a register associated with the Hilbert space ℋR(𝑡) := (C𝑁 ⊗ C𝑁 )⊗𝑡. Let R be a register denoting the
infinite dimensional Hilbert space

ℋR :=
∞⨁︁
𝑡=0

ℋR(𝑡) =
∞⨁︁
𝑡=0

(C𝑁 ⊗ C𝑁 )⊗𝑡. (3.16)

Note that (C𝑁 ⊗ C𝑁 )⊗0 = C is a one-dimensional Hilbert space. Thus, ℋR(𝑡) is spanned by the
states |𝑥1, 𝑦1, . . . , 𝑥𝑡, 𝑦𝑡⟩ where 𝑥𝑖, 𝑦𝑖 ∈ [𝑁 ]. We will sometimes divide up the R(𝑡) register into R(𝑡) :=

(R
(𝑡)
X ,R

(𝑡)
Y ) where R

(𝑡)
X refers to the registers containing |𝑥1, . . . , 𝑥𝑡⟩ and R

(𝑡)
Y refers to the registers

containing |𝑦1, . . . , 𝑦𝑡⟩. We write R
(𝑡)
X,𝑖 to refer the register containing |𝑥𝑖⟩. We say that a state

|𝑥1, 𝑦1, . . . , 𝑥𝑡, 𝑦𝑡⟩ has length 𝑡. Note that two states of different lengths are orthogonal by definition,
since ℋR is a direct sum

⨁︀∞
𝑡=0ℋR(𝑡) .

Notation 2 (Extending fixed-length operators to variable-length). For any operator 𝑂 defined on
the fixed-size Hilbert space ℋR(𝑡), we will abuse notation and write 𝑂 to refer to the same operator
extended to act on all of ℋR. The extended operator is the direct sum of 𝑂 and the 0 operator on
ℋR(𝑡′) for all 𝑡′ ̸= 𝑡.

Thus, if we have two operators 𝑂1 and 𝑂2 which act on ℋR(𝑡1) and ℋR(𝑡2) respectively, the operator
𝑂1 +𝑂2 denotes the result of summing the extensions of 𝑂1 and 𝑂2 to all of ℋR.

Notation 3 (Variable-length tensor powers). For any unitary 𝑈 ∈ 𝒰(𝑁2), let

𝑈⊗* :=

∞∑︁
𝑡=0

𝑈⊗𝑡 (3.17)

be a unitary that acts on the Hilbert space ℋR.

Notation 4 (Fixed-length projectors). For any integers ℓ, 𝑟 ≥ 0, let Πℓ,𝑟 denote the projector acting
on ℋR ⊗ℋR that projects onto the fixed-length Hilbert space ℋR(ℓ) ⊗ℋR(𝑟) .

Notation 5 (Maximum-length projectors). For any integer 𝑡 ≥ 0, let Π≤𝑡 denote the projector acting
on ℋR ⊗ℋR onto the Hilbert space

⨁︀
ℓ,𝑟≥0:ℓ+𝑟≤𝑡ℋR(ℓ) ⊗ℋR(𝑟).

6



3.7 Relation states

We define a relation 𝑅 to be any multi-set 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥|𝑅|, 𝑦|𝑅|)} of ordered pairs (𝑥𝑖, 𝑦𝑖) ∈
[𝑁 ]2. Note that this differs slightly from the standard notion of a relation in the mathematical
literature, which typically defines 𝑅 to be a set (without repeated elements) of ordered pairs.

Definition 6. Let ℛ denote the set of all relations 𝑅. For any 𝑡 ≥ 0, let ℛ𝑡 denote the set of all
size-𝑡 relations.

Definition 7. For a relation 𝑅, we use Dom(𝑅) to denote the set

Dom(𝑅) = {𝑥 : 𝑥 ∈ [𝑁 ], ∃𝑦 s.t.(𝑥, 𝑦) ∈ 𝑅}, (3.18)

and Im(𝑅) to denote the set

Im(𝑅) = {𝑦 : 𝑦 ∈ [𝑁 ],∃𝑥 s.t.(𝑥, 𝑦) ∈ 𝑅}. (3.19)

Note that while 𝑅 can be a multi-set, Dom(𝑅) and Im(𝑅) are ordinary sets, i.e., their definition does
not permit repeated elements.

We can associate any relation 𝑅 ∈ ℛ with the relation state |𝑅⟩ defined as follows.

Notation 6 (Relation states). For a relation 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)}, define the corresponding
relation state |𝑅⟩ to be the state

|𝑅⟩ :=
∑︀

𝜋∈Sym𝑡
|𝑥𝜋(1), 𝑦𝜋(1), . . . , 𝑥𝜋(𝑡), 𝑦𝜋(𝑡)⟩√︁

𝑡! ·
∑︀

(𝑥,𝑦)∈[𝑁 ]2 num(𝑅, (𝑥, 𝑦))!
. (3.20)

where num(𝑅, (𝑥, 𝑦)) denotes the number of times the tuple (𝑥, 𝑦) appears in 𝑅.

Fact 1. For any relation 𝑅 ∈ ℛ, the state |𝑅⟩ is a unit vector.

Notation 7. For any integer 𝑡 ≥ 0, we define

Πℛ𝑡 :=
∑︁

𝑅∈ℛ:|𝑅|=𝑡

|𝑅⟩⟨𝑅| . (3.21)

We define the projector

Πℛ :=
∞∑︁
𝑡=0

Πℛ𝑡 =
∑︁
𝑅∈ℛ

|𝑅⟩⟨𝑅| , (3.22)

which projects onto the span of all relation states |𝑅⟩ for all 𝑅 ∈ ℛ.

Note that Πℛ𝑡 is the same as the projector onto the symmetric subspace Π𝑁2,𝑡
sym .

Notation 8 (Restricted sets of relations). Define the following restricted sets of relations:

• Let ℛinj
𝑡 be the set of all injective relations, i.e., relations 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)} of size 𝑡,

where (𝑦1, . . . , 𝑦𝑡) ∈ [𝑁 ]𝑡dist. Let ℛinj := ∪𝑁
𝑡=0ℛ

inj
𝑡 .

• Let ℛbij
𝑡 be the set of all bijective relations, i.e., relations 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)} of size 𝑡,

where (𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡dist and (𝑦1, . . . , 𝑦𝑡) ∈ [𝑁 ]𝑡dist. Let ℛbij := ∪𝑁
𝑡=0ℛ

bij
𝑡 .

For relations 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)} where the tuples are all distinct, i.e., (𝑥𝑖, 𝑦𝑖) ̸= (𝑥𝑗 , 𝑦𝑗)
when 𝑖 ̸= 𝑗, the normalization factor is simply 1/

√
𝑡!, i.e.,

|𝑅⟩R =
1√
𝑡!

∑︁
𝜋∈Sym𝑡

|𝑥𝜋(1), 𝑦𝜋(1), . . . , 𝑥𝜋(𝑡), 𝑦𝜋(𝑡)⟩R . (3.23)

Note that any relation 𝑅 ∈ ℛinj or 𝑅 ∈ ℛbij satisfies this condition.
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3.8 Path-recording framework

We review the path-recording framework proposed in [6] for constructing various types of path-
recording oracles 𝑉 .

3.8.1 Restricted subset of relations

To develop the path-recording framework, we define the following notations.

• 𝑡max is an integer between 1 and 𝑁 sets the maximum size of the relations. This integer also
sets the limit on how many queries we can make to the path-recording oracle.

• 𝒮 inj
𝑡 is a subset of all the injective relations ℛinj

𝑡 of size 𝑡 for any 0 ≤ 𝑡 ≤ 𝑡max. In particular, we
require the subset for the maximum 𝑡 to be non-empty: |𝒮 inj

𝑡max
| ≥ 1.

• 𝒮 inj := ∪𝑡max
𝑡=0 𝒮 inj

𝑡 . The set 𝒮 restricts the relations that the path-recording oracle could use.

We define the following two constraints on the restricted set 𝒮 inj.

Definition 8 (Consistency). We say the set 𝒮 inj of relations is consistent if

∀(𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡, ∃(𝑦1, . . . , 𝑦𝑡) ∈ [𝑁 ]𝑡, (3.24)

such that {(𝑥𝑖, 𝑦𝑖)}𝑡𝑖=1 ∈ 𝒮 inj. (3.25)

Furthermore, if {(𝑥𝑖, 𝑦𝑖)}𝑡𝑖=1 ∈ 𝒮 inj, then for any 0 ≤ 𝜏 ≤ 𝑡, {(𝑥𝑖, 𝑦𝑖)}𝜏𝑖=1 ∈ 𝒮 inj.

Definition 9 (Uniform growth). We say the set 𝒮 inj of relations satisfies the uniform growth constraint
if for all 0 ≤ 𝑡 < 𝑡max, there exists 𝒵𝑡 ≥ 1, such that for all 𝑥 ∈ [𝑁 ] and 𝑅 ∈ 𝒮 inj

𝑡 ,

𝒵𝑡 =
∑︁

𝑦∈[𝑁 ], s.t.

𝑅∪{(𝑥,𝑦)}∈𝒮 inj𝑡+1

1. (3.26)

3.8.2 𝒮 inj-restricted path-recording oracle

For the set 𝒮 inj of relations defined here, we have 𝒵𝑡 = (𝑁 −𝑁1/2𝑡).
We now recall the definition of the 𝒮 inj-restricted path-recording oracle from [6].

Definition 10 (𝒮 inj-restricted path-recording oracle). Given any consistent set 𝒮 inj of relations that
satisfies uniform growth. The 𝒮 inj-restricted path-recording oracle 𝑉 (𝒮 inj) is a linear map

𝑉 (𝒮 inj) : ℋA ⊗ℋR → ℋA ⊗ℋR (3.27)

defined as follows. For all 0 ≤ 𝑡 < 𝑡max, 𝑅 ∈ 𝒮 inj
𝑡 , and 𝑥 ∈ [𝑁 ],

𝑉 (𝒮 inj) : |𝑥⟩A |𝑅⟩R ↦→ 1√︀
𝒵|𝑅|

∑︁
𝑦∈[𝑁 ],

𝑅∪{(𝑥,𝑦)}∈𝒮 inj𝑡+1

|𝑦⟩A |𝑅 ∪ {(𝑥, 𝑦)}⟩R . (3.28)

Given a 𝑡-query adversary 𝒜 specified by a 𝑡-tuple of unitaries (𝐴1,AB, . . . , 𝐴𝑡,AB), the global state after
an adversary has queried the 𝒮 inj-restricted path-recording oracle 𝑉 (𝒮 inj) 𝑡 times is given by

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR :=

𝑡∏︁
𝑖=1

(︁
𝑉 (𝒮 inj) ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB |{}⟩R . (3.29)
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Fact 2 (Explicit form). Given a consistent set 𝒮 inj of relations that satisfies uniform growth. We can
expand |𝒜𝑉 (𝒮 inj)·𝐺

𝑡 ⟩ABR to obtain

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR =

⎯⎸⎸⎷𝑡−1∏︁
𝑖=0

1

𝒵𝑖

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡dist
𝑅={(𝑥𝑖,𝑦𝑖)}𝑡𝑖=1∈𝒮

inj
𝑡

[︃
𝑡∏︁

𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |𝑅⟩R . (3.30)

We state two important lemmas about |𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR proven in [6].

Lemma 3.3 ( |𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR has unit norm; See [6]). For any consistent set 𝒮 inj of relations, any

adversary 𝒜 making 𝑡 ≤ 𝑡max queries to an 𝑛-qubit oracle, and any 𝑛-qubit unitary 𝐺, |𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR has unit norm.

Lemma 3.4 (Right unitary invariance; See [6]). Given a consistent set 𝒮 inj of relations that satisfies
uniform growth. For any 𝑛-qubit unitary 𝐺, we have

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR = (𝐺

R
(𝑡)
X,1

⊗ . . .⊗𝐺
R
(𝑡)
X,𝑡

) |𝒜𝑉 (𝒮 inj)
𝑡 ⟩ABR . (3.31)

A central theorem proven in [6] is that the |𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR is an approximate purification of any

algorithm that queries a Haar-random unitary many times.

Theorem 2 (𝑉 (𝒮 inj) is indistinguishable from Haar random; see [6]). Given a consistent set 𝒮 inj of
relations that satisfies uniform growth. Let 𝒜 be a 𝑡-query oracle adversary. Then

TD

(︂
E

𝒪←𝜇Haar

|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 | ,TrR
(︁
|𝒜𝑉 (𝒮 inj)

𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)
𝑡 |ABR

)︁)︂
(3.32)

≤ 2𝑡(𝑡− 1)

𝑁 + 1
+ 2

(︃
1−

𝑡−1∏︁
𝑖=0

𝒵𝑖 ·
(𝑁 − 𝑡)!

𝑁 !

)︃
. (3.33)

Using 𝒵𝑖 = 𝑁(1− 𝑖𝑁−1/2) for the set 𝒮 inj of relations defined in this work, we have

TD

(︂
E

𝒪←𝜇Haar

|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 | ,TrR
(︁
|𝒜𝑉 (𝒮 inj)

𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)
𝑡 |ABR

)︁)︂
(3.34)

≤ 2𝑡(𝑡− 1)

𝑁 + 1
+ 2

(︃
1−

𝑡−1∏︁
𝑖=0

𝒵𝑖 ·
(𝑁 − 𝑡)!

𝑁 !

)︃
≤ 3𝑡(𝑡− 1)

𝑁1/2
. (3.35)

3.8.3 Enhanced gentle measurement lemma

The following lemma will be useful for bounding the distance between a pair of mixed states whose
purifications are related by a projection that acts only on the purifying register. When applicable,
this lemma gives a quadratically improved bound over the standard gentle measurement lemma.

Lemma 3.5 (Enhanced gentle measurement lemma; See [6]). Let 𝜌CD be a density matrix on registers
C,D and let ΠCD be a projector of the form ΠCD = IdC ⊗ Π′D where Π′D is a projector that acts on
register D. Then the following holds,

‖TrD(𝜌CD)− TrD(ΠCD · 𝜌CD ·ΠCD)‖1 = 1− Tr(ΠCD · 𝜌CD). (3.36)
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4 Proof of Theorem 1

4.1 Restriction to a special distinct subspace

Definition 11 (Projection on 𝑥𝑖’s). We define the projector,

ΠXRdist

R
(𝑡)
𝑋

=
∑︁

(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

s.t. (𝑥1,𝑅,...,𝑥𝑡,𝑅)∈[𝑁1/2]𝑡dist

|𝑥1, . . . , 𝑥𝑡⟩⟨𝑥1, . . . , 𝑥𝑡|R(𝑡)
𝑋

. (4.1)

Note that for any (𝑦1, . . . , 𝑦𝑡) ∈ [𝑁 ]𝑡 such that (𝑦1,𝐿, . . . , 𝑦𝑡,𝐿) ∈ [𝑁1/2]𝑡dist, we have (𝑦1, . . . , 𝑦𝑡) ∈
[𝑁 ]𝑡dist. When we apply the projector to the |𝒜𝑉 (𝒮 inj)·𝐺

𝑡 ⟩ABR, we obtain

ΠXRdist

R
(𝑡)
𝑋

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR (4.2)

=

⎯⎸⎸⎷ 1

𝑁 𝑡

𝑡−1∏︁
𝑖=0

1

1− 𝑖/𝑁1/2

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡

𝑅={(𝑥1,𝑦1),...,(𝑥𝑡,𝑦𝑡)}
s.t. (𝑥1,𝑅,...,𝑥𝑡,𝑅)∈[𝑁1/2]𝑡dist
and (𝑦1,𝐿,...,𝑦𝑡,𝐿)∈[𝑁1/2]𝑡dist

[︃
𝑡∏︁

𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |𝑅⟩R . (4.3)

We now analyze the norm of the projected state.

Lemma 4.1. Given 𝑡 < 𝑁1/2 and a unitary 2-design D. The projected state has norm bounded by,

E
𝐺←D

⟨𝒜𝑉 (𝒮 inj)·𝐺
𝑡 |ΠXRdist

R
(𝑡)
𝑋

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR ≥ 1− 𝑡2

𝑁1/2
. (4.4)

Proof. From Lemma 3.4„ we have

⟨𝒜𝑉 (𝒮 inj)·𝐺
𝑡 |ΠXRdist

R
(𝑡)
𝑋

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR = ⟨𝒜𝑉 (𝒮 inj)

𝑡 |𝐺†,⊗𝑡
R
(𝑡)
𝑋

ΠXRdist

R
(𝑡)
𝑋

𝐺⊗𝑡
R
(𝑡)
𝑋

|𝒜𝑉 (𝒮 inj)
𝑡 ⟩ABR . (4.5)

To bound this quantity, note that we have

Id−ΠXRdist

R
(𝑡)
𝑋

≤
∑︁

1≤𝑖<𝑗≤𝑡
Πeq,R

R
(𝑡)
𝑋,𝑖R

(𝑡)
𝑋,𝑗

, (4.6)

where ≤ is the PSD order. Hence, using Lemma 3.2, we have

1− E
𝐺←D

⟨𝒜𝑉 (𝒮 inj)
𝑡 |𝐺†,⊗𝑡

R
(𝑡)
𝑋

ΠXRdist

R
(𝑡)
𝑋

𝐺⊗𝑡
R
(𝑡)
𝑋

|𝒜𝑉 (𝒮 inj)
𝑡 ⟩ABR (4.7)

≤
∑︁

1≤𝑖<𝑗≤𝑡
Tr

(︂
E

𝐺←D
(𝐺

R
(𝑡)
𝑋,𝑖

⊗𝐺
R
(𝑡)
𝑋,𝑗

)† ·Πeq,R

R
(𝑡)
𝑋,𝑖R

(𝑡)
𝑋,𝑗

· (𝐺
R
(𝑡)
𝑋,𝑖

⊗𝐺
R
(𝑡)
𝑋,𝑗

) · |𝒜𝑉 (𝒮 inj)
𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)

𝑡 |ABR
)︂

(4.8)

≤ 𝑡(𝑡− 1)

2
·

(︃
𝑁3/2 − 1

𝑁2 − 1
+
𝑁 −𝑁1/2

𝑁2 − 1

)︃
≤ 𝑡2

𝑁1/2
. (4.9)

This concludes the proof of this lemma.
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4.2 Purification of our construction

Given an 𝑛-qubit unitary 𝐺 and a 𝑡-query adversary 𝒜 specified by a 𝑡-tuple of (𝑛+𝑚)-qubit unitaries
(𝐴1,AB), . . . , 𝐴𝑡,AB) with 𝑡 < 𝑁1/2. When 𝒜 queries our constructed 𝑛-qubit oracle,

𝒪𝑓0,𝑓1,𝑓2 ·𝐺 := 𝒪R,𝑓2 · 𝒪𝑓0 · 𝒪L,𝑓1 ·𝐺, (4.10)

for random functions 𝑓0 : [𝑁 ] ↦→ {±1}, 𝑓1, 𝑓2 : [𝑁1/2] ↦→ [𝑁1/2], we can purify the randomness in the
functions by defining the global state,

|𝒜RFLO·𝐺
𝑡 ⟩ABF0F1F2

:=
∑︁

(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡

[︃
𝑡∏︁

𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A · 𝐶A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃

⊗ 1√
2𝑁

∑︁
𝑓0:[𝑁 ]↦→{±1}

(︃
𝑡∏︁

𝑖=1

𝑓0(𝑦𝑖,𝐿‖𝑥𝑖,𝑅)

)︃
|𝑓0⟩F0

(4.11)

⊗ 1√︀
𝑁𝑁1/2/2

∑︁
𝑓1:[𝑁1/2]↦→[𝑁1/2]

(︃
𝑡∏︁

𝑖=1

𝛿𝑥𝑖,𝐿⊕𝑓1(𝑥𝑖,𝑅)=𝑦𝑖,𝐿

)︃
|𝑓1⟩F1

(4.12)

⊗ 1√︀
𝑁𝑁1/2/2

∑︁
𝑓2:[𝑁1/2]↦→[𝑁1/2]

(︃
𝑡∏︁

𝑖=1

𝛿𝑥𝑖,𝑅⊕𝑓2(𝑦𝑖,𝐿)=𝑦𝑖,𝑅

)︃
|𝑓2⟩F2

, (4.13)

where register F0 is used to store a function mapping from [𝑁 ] to {±1}, register F1 and F2 are used
to store a function mapping from [𝑁1/2] to [𝑁1/2], and for two bitstrings 𝑥, 𝑥′, 𝛿𝑥=𝑥′ is 1 if the two
bitstrings are equal and 0 otherwise.

After tracing out the purifying registers F0,F1,F2, the resulting density matrix on register A,B is
equal to the density matrix

E
𝑓0,𝑓1,𝑓2

|𝒜𝒪𝑓0,𝑓1,𝑓2 ·𝐺⟩⟨𝒜𝒪𝑓0,𝑓1,𝑓2 ·𝐺|AB , (4.14)

where the functions 𝑓0, 𝑓1, 𝑓2 are sampled uniformly at random.

Fact 3 (Purification of our construction). For any 𝑛-qubit unitary 𝐺, we have

TrF0,F1,F2

[︁
|𝒜RFLO·𝐺

𝑡 ⟩⟨𝒜RFLO·𝐺
𝑡 |ABF0F1F2

]︁
= E

𝑓0,𝑓1,𝑓2

[︁
|𝒜𝒪𝑓0,𝑓1,𝑓2 ·𝐺⟩⟨𝒜𝒪𝑓0,𝑓1,𝑓2 ·𝐺|AB

]︁
. (4.15)

Proof. The proof follows from the definition of 𝒪𝑓0 ,𝒪L,𝑓1 ,𝒪R,𝑓2 .

We consider a relation to be a multiset of tuples. We consider each tuple to be a pair of bitstrings
(𝑥, 𝑦) for 𝑥, 𝑦 ∈ [𝑁 ]. Hence, a relation is given by 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)} with (𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡

and (𝑦1, . . . , 𝑦𝑡) ∈ [𝑁 ]𝑡.

Definition 12 (F3-relation state). For any 0 ≤ 𝑡 ≤ 𝑁1/2 and relation 𝑅 = {(𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡)}
with (𝑥1, . . . , 𝑥𝑡) ∈ [𝑁 ]𝑡, (𝑦1, . . . , 𝑦𝑡) ∈ [𝑁 ]𝑡, we define the F3-relation state to be

|̃︀𝜑𝑅⟩F0,F1,F2
:=

1√
2𝑁

∑︁
𝑓0:[𝑁 ]↦→{±1}

(︃
𝑡∏︁

𝑖=1

𝑓0(𝑦𝑖,𝐿‖𝑥𝑖,𝑅)

)︃
|𝑓0⟩F0

(4.16)

⊗ 1√︀
𝑁𝑁1/2/2

∑︁
𝑓1:[𝑁1/2] ↦→[𝑁1/2]

(︃
𝑡∏︁

𝑖=1

𝛿𝑥𝑖,𝐿⊕𝑓1(𝑥𝑖,𝑅)=𝑦𝑖,𝐿

)︃
|𝑓1⟩F1

(4.17)
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⊗ 1√︀
𝑁𝑁1/2/2

∑︁
𝑓2:[𝑁1/2] ↦→[𝑁1/2]

(︃
𝑡∏︁

𝑖=1

𝛿𝑥𝑖,𝑅⊕𝑓2(𝑦𝑖,𝐿)=𝑦𝑖,𝑅

)︃
|𝑓2⟩F2

, (4.18)

which depends only on the relation 𝑅 but not the ordering of (𝑥1, 𝑦1), . . . , (𝑥𝑡, 𝑦𝑡). The ̃︀· denotes that
|̃︀𝜑𝑅⟩F0,F1,F2

is an unnormalized pure state, possibly with norm 0.

Fact 4 (Inner products between relations). Given 0 ≤ 𝑡 ≤ 𝑁1/2. For any 𝑅,𝑅′ ∈ ℛdist
𝑡 , we have

⟨̃︀𝜑𝑅′ |̃︀𝜑𝑅⟩F0,F1,F2
=

1

𝑁 𝑡
· 𝛿𝑅=𝑅′ . (4.19)

For any 𝑅 ∈ ℛdist
𝑡 and 𝑅′ ∈ ℛ𝑡, we have

⟨̃︀𝜑𝑅′ |̃︀𝜑𝑅⟩F0,F1,F2
= 0. (4.20)

Proof. This fact can be easily shown by evaluating the inner product explicitly.

From this basic fact, we can present the following two definitions.

Definition 13 (Unit-norm F3-relation state). Given 0 ≤ 𝑡 ≤ 𝑁1/2. For all 𝑅 ∈ ℛdist
𝑡 , we define the

normalized F3-relation state,
|𝜑𝑅⟩F0,F1,F2

:=
√
𝑁 𝑡 |̃︀𝜑𝑅⟩F0,F1,F2

, (4.21)

where |𝜑𝑅⟩F0,F1,F2
has unit norm.

Definition 14 (Distinct relation projectors). Given 0 ≤ 𝑡 ≤ 𝑁1/2. We define the projector to the
subspace formed by size-𝑡 distinct F3-relation states,

ΠF3 dist,𝑡
F0,F1,F2

:=
∑︁

𝑅∈ℛdist
𝑡

|𝜑𝑅⟩⟨𝜑𝑅| . (4.22)

Fact 5 (Alternative formulation of the purified state). Given 0 ≤ 𝑡 ≤ 𝑁1/2. We have

|𝒜RFLO·𝐺
𝑡 ⟩ABF0F1F2

=
∑︁

(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡

𝑅={(𝑥1,𝑦1),...,(𝑥𝑡,𝑦𝑡)}

[︃
𝑡∏︁

𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A · 𝐶A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |̃︀𝜑𝑅⟩F0,F1,F2

. (4.23)

Furthermore, after projecting to the subspace of distinct relations, we have

ΠF3 dist,𝑡
F0,F1,F2

|𝒜RFLO·𝐺
𝑡 ⟩ABF0F1F2

(4.24)

=
1√
𝑁 𝑡

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡

𝑅={(𝑥1,𝑦1),...,(𝑥𝑡,𝑦𝑡)}
s.t. (𝑥1,𝑅,...,𝑥𝑡,𝑅)∈[𝑁1/2]𝑡dist
and (𝑦1,𝐿,...,𝑦𝑡,𝐿)∈[𝑁1/2]𝑡dist

[︃
𝑡∏︁

𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A · 𝐶A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |𝜑𝑅⟩F0,F1,F2

. (4.25)

Proof. This fact follows immediately from Fact 4, Definition 13, and Definition 14.
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By comparing the result obtained in this lemma to the projected 𝑉 (𝒮 inj) state,

ΠXRdist

R
(𝑡)
𝑋

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR (4.26)

=
1√
𝑁 𝑡

⎯⎸⎸⎷𝑡−1∏︁
𝑖=0

1

1− 𝑖/𝑁1/2

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡

𝑅={(𝑥1,𝑦1),...,(𝑥𝑡,𝑦𝑡)}
s.t. (𝑥1,𝑅,...,𝑥𝑡,𝑅)∈[𝑁1/2]𝑡dist
and (𝑦1,𝐿,...,𝑦𝑡,𝐿)∈[𝑁1/2]𝑡dist

[︃
𝑡∏︁

𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |𝑅⟩R . (4.27)

we see that they are almost the same up to (1) the slight difference in the factor in front and (2) the
difference between |𝜑𝑅⟩F0,F1,F2

and |𝑅⟩R. We can address Point (2) using the following fact.

Fact 6 (Compressing F3-relation states to relation states). Given 0 ≤ 𝑡 ≤ 𝑁1/2. There exists a linear
map Compress𝑡 from register F0,F1,F2 to register X,Y, such that

Compress𝑡 |𝜑𝑅⟩F0,F1,F2
= |𝑅⟩R , (4.28)

for all relation 𝑅 ∈ ℛdist
𝑡 and Compress𝑡 is an isometry in the subspace ΠF3 dist,𝑡

F0,F1,F2
.

Proof. This follows immediately from Fact 4 that ⟨𝜑𝑅′ |𝜑𝑅⟩F0,F1,F2
= 𝛿𝑅=𝑅′ = ⟨𝑅′|𝑅⟩R.

By combining all these facts, we obtain the following lemma.

Lemma 4.2 (Relating 𝑉 (𝒮 inj) and RFLO). We have

TrX,Y

[︂
ΠXRdist

R
(𝑡)
𝑋

· |𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)·𝐺

𝑡 |ABR ·ΠXRdist

R
(𝑡)
𝑋

]︂
(4.29)

=
𝑡−1∏︁
𝑖=0

(︂
1

1− 𝑖/𝑁1/2

)︂
· TrF0,F1,F2

[︁
ΠF3 dist,𝑡

F0,F1,F2
· |𝒜RFLO·𝐺

𝑡 ⟩⟨𝒜RFLO·𝐺
𝑡 |ABF0F1F2

·ΠF3 dist,𝑡
F0,F1,F2

]︁
. (4.30)

Proof. From Fact 6, we have

ΠXRdist

R
(𝑡)
𝑋

|𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩ABR = Compress𝑡 ·

⎯⎸⎸⎷𝑡−1∏︁
𝑖=0

(︂
1

1− 𝑖/𝑁1/2

)︂
· (4.31)

∑︁
(𝑥1,...,𝑥𝑡)∈[𝑁 ]𝑡

(𝑦1,...,𝑦𝑡)∈[𝑁 ]𝑡

𝑅={(𝑥1,𝑦1),...,(𝑥𝑡,𝑦𝑡)}
s.t. (𝑥1,𝑅,...,𝑥𝑡,𝑅)∈[𝑁1/2]𝑡dist
and (𝑦1,𝐿,...,𝑦𝑡,𝐿)∈[𝑁1/2]𝑡dist

[︃
𝑡∏︁

𝑖=1

(︁
|𝑦𝑖⟩⟨𝑥𝑖|A ·𝐺A ·𝐴𝑖,AB

)︁
|0⟩AB

]︃
⊗ |𝜑𝑅⟩F0,F1,F2

(4.32)

= Compress𝑡 ·

⎯⎸⎸⎷𝑡−1∏︁
𝑖=0

(︂
1

1− 𝑖/𝑁1/2

)︂
·ΠF3 dist,𝑡

F0,F1,F2
|𝒜RFLO·𝐺

𝑡 ⟩ABF0F1F2
. (4.33)

Because Compress𝑡 is an isometry in the subspace ΠF3 dist,𝑡
F0,F1,F2

, we have obtained this lemma.
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4.3 Full proof

Proof of Theorem 1. Consider any unitary 2-design D. We compare the following states,

𝜌(1) := E
𝒪←𝜇Haar

[︀
|𝒜𝒪𝑡 ⟩⟨𝒜𝒪𝑡 |AB

]︀
(4.34)

𝜌(2) := E
𝐺←D

TrX,Y

[︁
|𝒜𝑉 (𝒮 inj)·𝐺

𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)·𝐺
𝑡 |ABR

]︁
(4.35)

𝜌(3) := E
𝐺←D

TrX,Y

[︂
ΠXRdist

R
(𝑡)
𝑋

· |𝒜𝑉 (𝒮 inj)·𝐺
𝑡 ⟩⟨𝒜𝑉 (𝒮 inj)·𝐺

𝑡 |ABR ·ΠXRdist

R
(𝑡)
𝑋

]︂
(4.36)

𝜌(4) := E
𝐺←D

TrF0,F1,F2

[︁
ΠF3 dist,𝑡

F0,F1,F2
· |𝒜RFLO·𝐺

𝑡 ⟩⟨𝒜RFLO·𝐺
𝑡 |ABF0F1F2

·ΠF3 dist,𝑡
F0,F1,F2

]︁
(4.37)

𝜌(5) := E
𝐺←D

TrF0,F1,F2

[︁
|𝒜RFLO·𝐺

𝑡 ⟩⟨𝒜RFLO·𝐺
𝑡 |ABF0F1F2

]︁
(4.38)

𝜌(6) := E
𝐺←D

E
𝑓0,𝑓1,𝑓2

|𝒜𝒪𝑓0,𝑓1,𝑓2 ·𝐺⟩⟨𝒜𝒪𝑓0,𝑓1,𝑓2 ·𝐺|AB . (4.39)

All of these matrices are over register A,B and are PSD. However, they are not necessarily trace one.
𝜌(1) is when the adversary 𝒜 access Haar-random unitaries. 𝜌(6) is when the adversary 𝒜 access our
random unitary construction 𝒪𝑓0,𝑓1,𝑓2 ·𝐺 := 𝒪R,𝑓2 · 𝒪𝑓0 · 𝒪L,𝑓1 ·𝐺. From Fact 3, we have 𝜌(5) = 𝜌(6).
By triangle inequality, we can bound the distance between 𝜌(1) and 𝜌(6) by the following,

‖𝜌(1) − 𝜌(6)‖ 1 ≤ ‖𝜌(1) − 𝜌(2)‖ 1 + ‖𝜌(2) − 𝜌(3)‖ 1 + ‖𝜌(3) − 𝜌(4)‖ 1 + ‖𝜌(4) − 𝜌(5)‖ 1. (4.40)

‖𝜌(1) − 𝜌(2)‖ 1 is at most 3𝑡2

𝑁1/2 using Eq. (3.35) obtained from Theorem 2. ‖𝜌(2) − 𝜌(3)‖ 1 is at most
𝑡2

𝑁1/2 using Lemma 3.5 and Lemma 4.1. ‖𝜌(3) − 𝜌(4)‖ 1 can be bounded using Lemma 4.2,

‖𝜌(3) − 𝜌(4)‖ 1 ≤

⃒⃒⃒⃒
⃒1−

𝑡−1∏︁
𝑖=0

(︁
1− 𝑖/𝑁1/2

)︁⃒⃒⃒⃒⃒ · ‖𝜌(3)‖ 1 ≤
0.5𝑡2

𝑁1/2
. (4.41)

Bounding ‖𝜌(4) − 𝜌(5)‖ 1 is slightly more complicated and requires using Lemma 3.5, Lemma 4.1, and
Lemma 4.2. We have the following,

‖𝜌(4) − 𝜌(5)‖ 1 ≤ 1− E
𝐺←D

Tr
[︁
ΠF3 dist,𝑡

F0,F1,F2
· |𝒜RFLO·𝐺

𝑡 ⟩⟨𝒜RFLO·𝐺
𝑡 |ABF0F1F2

·ΠF3 dist,𝑡
F0,F1,F2

]︁
(4.42)

= 1−
𝑡−1∏︁
𝑖=0

(︁
1− 𝑖/𝑁1/2

)︁
· Tr
[︁
𝜌(3)
]︁

(4.43)

≤

(︃
1−

𝑡−1∏︁
𝑖=0

(︁
1− 𝑖/𝑁1/2

)︁)︃
+
(︁
1− Tr

[︁
𝜌(3)
]︁)︁

(4.44)

≤ 0.5𝑡2

𝑁1/2
+

𝑡2

𝑁1/2
=

1.5𝑡2

𝑁1/2
. (4.45)

The first line uses Lemma 3.5. The second line uses Lemma 4.2. The third line uses the inequality
1 − 𝑎𝑏 ≤ (1 − 𝑎) + (1 − 𝑏) for any 𝑎, 𝑏 ∈ [0, 1]. The fourth line uses Eq. (4.41) and Lemma 4.1. By
aggregating all inequalities, we obtain

‖𝜌(1) − 𝜌(6)‖ 1 ≤
3𝑡2

𝑁1/2
+

𝑡2

𝑁1/2
+

0.5𝑡2

𝑁1/2
+

1.5𝑡2

𝑁1/2
≤ 6𝑡2

𝑁1/2
, (4.46)

which is negligible in 𝑛 for any 𝑡 = 2𝑜(𝑛) since 𝑁 = 2𝑛.
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