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I am always fascinated by the fundamental elements constituting our world, i.e. fire, wa-
ter, earth and air. The complexity evolved from their simplicity is always an interesting phe-
nomenon. In this project, I considered the simulation and rendering of water. In particular, I
use smoothed particle hydrodynamics (SPH) for water simulation. It can be easily extended
to the simulation of air by using different motion parameter, but it would take completely
different scheme for realistic rending, so only water is considered.

This report is ordered as follows: Part 1 will cover the dynamics of water particles, Part
2 will cover the reconstruction of water surface, and Part 3 will discuss my rendering scheme
to create realistic images (videos).

1 DYNAMICS OF WATER UNDER SPH

The most important equation governing the dynamics of water is the well-known Navier-
Stokes equation,

∂v

∂t
+v ·∇v = 1

ρ
(−∇p +µ∇2v+ fext),

where v = v(x, y, z, t ) is the velocity field for a fixed point in space-time. For grid-based method,
the velocity field is updated according to this equation. But for particle-based method, this
equation has to be modified (or recovered to it’s original form). For particle-based method,
thousands of particles move along the velocity stream of the fluid. Thus for a particular par-
ticle vi = vi (xi (t ), yi (t ), zi (t ); t ), a function of time. And the total time derivative of vi is

dvi

d t
= ∂vi

∂x
ẋi + ∂vi

∂y
ẏi + ∂vi

∂z
żi + ∂vi

∂t
= ∂v

∂t
+v ·∇v,

which is exactly the LHS of Navier-Stokes equation. Thus we can simply calculate the accel-
eration, ai , for each particles via the Navier-Stokes equation.
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Then for each time step, I would assign ri := ri +vi ∗∆t and vi := vi +ai ∗∆t . I used fixed
∆t for simplicity. However the tuning of∆t is important, as small value results in long simula-
tion, and large value result in unstable behavior. Also under different variations for dynamics
simulation, which will be discussed in the following content, ∆t can differ significantly.

1.1 SMOOTHED PARTICLE HYDRODYNAMICS

This technique is initially developed for simulation of astrophysical problems, but can also
be used for fluid simulation. The basic idea for smoothed particle hydrodynamics (SPH) is to
interpolate any discrete quantity for particle system. For example, the density for a particle-
based system would consists of several Dirac delta functions, but we want a smoothed version
of the density field. According to SPH, a scalar quantity A is interpolated as

A(r) =∑
j

m j
A j

ρ j
W (r− r j ,h),

where W is a smoothing kernel with finite support, with radius of support equals to h. Also W
is normalized such that ∫

W (r)dr = 1.

In the previous example on smoothing ρ, we simply plug it into A, and we would get

ρ(r) =∑
j

m j
ρ j

ρ j
W (r− r j ,h) =∑

j
m j W (r− r j ,h).

The gradient and Laplacian for these smoothed quantity is simply based on the gradient and
laplacian of the smoothing kernel, i.e.

∇A(r) =∑
j

m j
A j

ρ j
∇W (r− r j ,h) and ∇2 A(r) =∑

j
m j

A j

ρ j
∇2W (r− r j ,h).

The choice for smoothing kernel follows the implementation of [2, 3]. A poly6 kernel is used
for all cases except the calculation of pressure (∇p), which uses Debrun’s spike kernel, and
viscosity (∇2v), which uses their hand-made kernel.

I have used a simple acceleration structure for SPH calculation. Since the smoothing
kernel has a finite support, we only need to iterate through a small amount of neighbors
rather than all the particles when calculating the smoothed quantity. To find the neighbors,
the space is dissected into fixed grids. Each grid cell with size h×h×h. When computing the
smoothed value for some r, only the particles in the nine neighboring grid cell (including the
one containing r) are considered. This simple structure can gain a huge speed-up.

1.2 VISCOSITY

After discussing the concept of SPH. We will next consider the calculation for the RHS of the
Navier-Stokes equation.
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We will first focus on viscosity. The idea of viscosity is that when nearby particles are
all moving in a particular direction, the left behind particle (or particles moving in the oppo-
site direction) will experience a force that drag them towards the common direction. This is
precisely the idea of the Laplacian term in the Navier-Stokes equation,

fvisc
i =µ∇2v =µ∑

j
m j

v j

ρ j
∇2W (ri − r j ,h).

But applying SPH will actually yields an asymmetric forces, thus [2] suggests the following
modification,

fvisc
i =µ∑

j
m j

v j −vi

ρ j
∇2W (ri − r j ,h).

This with their hand-made kernel function complete the calculation of viscosity.

1.3 SURFACE TENSION

Surface tension is also an important characteristic for water. Nevertheless a careful look at
Navier-Stokes equation will find nowhere for this term, since it is actually hidden inside fext.
The cause of surface tension is due to the self-attraction between particles. But since the net
force is 0 for particles in the interior of the fluid, only particles on the boundary will experi-
ence force. In [2], they come up with a method by interpolating color value (which is simply 1
for every particles) using SPH. And determine the surface tension from the color value. This
is the initial method I adopted. But in a later paper [4], they criticized that this method yields
an incorrect result and should be redefined as follows,

ftens
i =−κρi

∑
j

m j

mi
(ri − r j )W (ri − r j ,h).

Their idea is to directly model the attractive force between molecules, thus I decided to follow
their definition in my implementation.

1.4 PRESSURE

I think this is the most important part in fluid simulation, since both µ and κ can be set to 0
without effecting the general motion. But without pressure, every particle will drop to z = 0
due to gravity and become a thin film no matter how many particles are used. Thus a crucial
question arises: "what is pressure anyway?" A peek to the equation of state (EoS) for ideal gas
may give us some intuition, i.e.

p = n

V
RT = kρ.

From the equation, we can easily see that the larger the density is, the larger the pressure will
be. Thus each particle will experience a force pushing it towards region with lower density
(and the thin film problem will not occur).

In [2], they directly used the EoS for ideal gas to define pressure. And they stated that, if
the definition is modified into

p = k(ρ−ρ0),
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where ρ0 is the normal density, the simulation will be numerically more stable (this does not
affect the original equation of motion since ∇(p + c) = ∇p, but will affect the motion if SPH
is used). Also, the resulting force (−∇p) will not be symmetric under SPH, thus I apply the
following modification (there are several kinds of modification, this one is proposed in [2])

f
pres
i =−∑

j
m j

pi +p j

2ρ j
∇W (ri − r j ,h).

There is actually a loop hole in the above statement. If the variation of pressure depends
on density, it means that the water simulated will be compressible. This may sound absurd,
but is indeed true in reality. Since the constant k is very large for water (and most liquid), a
small change of density will result in a large restoring force. Thus we may feel that water is in-
compressible. However, in the simulation, we can not use a large k, since we would then need
an extremely small ∆t to have a stable result (due to Courant-Friedrichs-Lewy condition),
which is computationally impossible. The compressibility issue can be seen in some older
water simulation via SPH such as https://www.youtube.com/watch?v=baoAQaYxQcE. In
2007, Becker et al. [4] introduced a simple modification that would yield a nearly incom-
pressible fluid with feasible ∆t . Rather than using ideal gas EoS, they use Tait’s EoS,

p = B((ρ/ρ0)7 −1).

Because ∆t is much smaller than ideal gas EoS (at least 40 times smaller), I will use ideal gas
for parameter tuning and prototyping, only the final result uses the Tait’s EoS.

1.5 BOUNDARY CONDITION

What should we do when a particle is about to pierce through some surface (such as bound-
ary wall or objects)? This is also an important issue with many interesting solutions. A naive
solution suggested by [2] is to reflect the velocity vector when it is about to pierce through a
surface with normal n̂,

v := v−2(v · n̂)n̂.

The result for my implementation to this method is shown in water_elastic.avi. I used com-
pressible fluid and MATLAB for fast real-time rendering (it is actually a 3D simulation, but I
put the camera on the side for better visibility). As can be seen from the video, the water is
very bouncy and unstable. One reason for this is due to the compressibility, but another more
important reason is because elastic collision preserves energy, so the gravitational energy are
not released. Therefore I decided to make the collision less elastic, the result is shown in wa-
ter_inelastic.avi. Now, the water is much less bouncy. But some very weird behavior appears
on the side, there seems to be small fountains emerging. Thus some other methods have to
be used in order to get a realistic motion simulation.

Inspired by the ghost particle method (one variation can be seen in [4]), I constructed
a damped repulsive force acting on the particle when it is close to the boundary surface. If
the distance to the surface d is smaller than a predefined particle radius r , the particle will
experience a force

fbound
i = ρi (α(r −d)−β(vi · n̂))n̂.
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(a) Picture from [5] (b) Picture from [7]

Figure 2.1: Pictures for surface reconstruction using isotropic kernel method, the surface is
very bumpy due to the particle nature of particle-based methods.

The α term models the repulsive force from the surface, and the β term models the damping
force that lowers the kinetic energy of the particle. Using repulsive force yields a more natural
dynamics, but it means the particle is possible to pierce through the surface. To avoid such an
event, I would clamp the acceleration caused by other forces to some predefined value. The
result is shown in water_compressible.avi, which is much better than the previous two. The
dynamics for water particles is now complete. However the tuning of all the parameters, e.g.
α,β,B ,µ,κ,h ... etc., is still a heavy work, since they are not clearly written in the papers. It
takes days to yield a visibly realistic water dynamics. The codes for SPH are in SPHfluid.cpp,
which uses ideal gas EoS, and WCSPHfluid.cpp, which uses Tait’s EoS. A short MATLAB code
for rendering is in drawdots.m. We will then enter Section 2 on water surface reconstruction.

2 SURFACE RECONSTRUCTION VIA ANISOTROPIC KERNEL

There are several methods for visualizing water surface. I choose the method that reconstruct
an iso-surface for some predefined color value. Recall that color value is defined to be one for
each particle, so we have

c(r) =∑
j

m j

ρ j
W (r− r j ,h),

by the SPH framework. This can be done by using the popular marching cubes method [1].
It constructs a triangle mesh by dissecting the space into grids, and determine the triangles
within each grid cell from the color values on the eight vertices. To avoid holes in the orig-
inal method proposed in [1], all 256 combinations are configured. The table for the trian-
gles under each combinations is referenced from [6], which also gave a nice introduction to
marching cubes.

Now the problem turns into finding the color values on the vertices. A naive approach
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is to use the above equation directly. This is a feasible and natural solution, but the resultant
water surface is not very convincing. Owing to the particle nature of SPH method, the sur-
face can be very bumpy even with large amount of particles. In Fig. 2.1, a few examples are
shown. Fig. 2.1a comes from [5], it uses 140K particles, a very large number, but the resulting
surface is still very bumpy and doesn’t look much like liquid. Fig. 2.1b earned the "honorable
mention" award in Stanford’s Rendering Competition 2009. However, the surface is clearly
constituted by a number of particles.

Therefore, I adopted the method proposed in [5]. They come up with a novel approach
that uses anisotropic kernel for color value calculation, with the kernel stretched according
to the local principal component. The resulting surface is smooth and much more realistic.

2.1 DETERMINE ANISOTROPIC KERNEL VIA WPCA

The idea of their novel method is that each particle will now use a different smoothing kernel
and have a different position depending on the local particle distribution. However, this only
happens when we are reconstructing the water surface, and does not effect the simulation of
water dynamics. The new position for particle i is defined to be the weighted average (with
ri as the center) in weighted principal component analysis (WPCA), i.e.

r̄i = 1∑
j w(ri ,r j )

∑
j

w(ri ,r j )r j ,

where w is a weighting function with finite support = 2h. Since the weighting function has
a finite support, we can apply the grid acceleration structure to speed-up the calculation.
The definition for the new smoothing kernel is much more complicated, with many details
involved. A simplified procedure is to first compute the singular value decomposition (SVD)
of the weighted covariance matrix in WPCA, i.e.

RΣRT = 1∑
j w(ri ,r j )

∑
j

w(ri ,r j )(r j − r̄i )(r j − r̄i )T .

Note that R is an orthogonal matrix and the column vectors of R are the principal axes. I used
the code from [8] to calculate the SVD of a 3×3 symmetric matrix (eig3.h and eig3.cpp) in my
implementation. Then the smoothing kernel is defined (simplified version) as

W j (r) = det(Σ−1)W (Σ−1RT r,1).

The determinant helps preserving the property that W j integrates to 1. The modified color
value is then defined as

c̄(r) =∑
j

m j

ρ j
W j (r− r̄ j ).

To gain an intuition on this modification, we focus on the support of the kernel. Originally,
the support for W ( · ,h) is a sphere with radius = h. In this modified kernel, the support be-
comes an ellipsoid with three principal axes equal to the column vectors of R and the length
of each axes equals to the corresponding singular values. For particles in the interior of the
water, Σ≈ diag(h,h,h), thus it is roughly the same as the original kernel. For particles on the
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(a) Background: aluminum,
Material: glass, uses pho-
ton mapping

(b) Background: void, Mate-
rial: glass, uses photon
mapping

(c) Background: aluminum,
Material: glass, uses bidi-
rectional path tracing

Figure 3.1: A few different settings for rendering the triangle mesh

boundary of the water, the ellipsoid is flatten in the normal direction of the water surface,
thus the surface will become less bumpy and more realistic.

To speed-up the calculation of color value on the marching cubes’ grid vertices, I cal-
culated a tight axis-aligned bounding box (AABB) for an arbitrary ellipsoid. And for each
ellipsoid, I update only the color value of the vertices inside the AABB. I also used a hash map
to store the encountered grid cells, since many of them are sure to contain no triangles. The
complete code for surface reconstruction is in particle2pbrt.cpp.

3 RENDERING SCHEME FOR WATER SIMULATION

The last thing to do is to set up the scene, the rendering strategy and the material for the
triangle mesh to make it look like realistic water. I have tried out many different settings,
some results are shown in Fig. 3.1. I think the most efficient and satisfying surface integrator
is photon mapping. And I choose to enclose the whole thing with an aluminum box (for
matte box, the reflection on the surface of water looks very unnatural) to avoid reflecting into
emptiness. The refraction index for glass is set to the refraction index of water. For better
visibility on water movement, I decided not to render the container that contains the water. I
used luxrender for rendering since it is faster than pbrt. To produce a video, I would need to
render hundreds of images, so rendering time will be an important issue.

The final videos are water_comp.mp4 (compressible water) and water_incomp.mp4
(nearly incompressible water). The prototype scene files are in render_comp.lxs and ren-
der_incomp.lxs, respectively. It has to be slightly modified to render images at different time
steps. It takes about ten minutes to create each image, and about 1.5 days to produce a video.
For both videos, due to the high computational cost, only about 9K particles are used. Never-
theless the water surface is still very smooth. Some caustics can also be seen under the water,
as photon mapping is used. A final note is that the water simulation under SPH, although be-
ing visibly correct, is physically incorrect, since a lot of modification is made to the equation
of motion as shown in Section 1.
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