
Project #1: Height field B03902124 ⿈黃信元

I. Heightfield-ray intersection algorithm
I have tried 3 different algorithms for intersection. Two of the algorithms are built on top of the first.
The first algorithm is the simple 2D-DDA. I will briefly talk about what I have done. First is to
transform the ray into object space and check intersection with the bounding box of the heightfield.
Although pbrt had checked intersection with the BBox in world space, this is more compact thus
can gain a lot of speed-up (7.5s to 3.0s for landsea-big using single core). Then I did the traversal
on the 2D-grid. In 3D-DDA, when the ray hit a grid cell, it check intersection with all the primitives in
the cell. Although we only need to check intersection with two triangles, this is still quite time
consuming. A simple speed up is to create a bounding box for each cell, and check intersection
with the cell bounding box before going into two-triangles intersection test. Overhead of creating
bounding box is very low since it takes only a few scan through the heightfield data. But we can
further lower the computational cost by lowering the bounding box intersection time. This can be
done by making use of NextCrossingT (txNxt, tyNxt, txCur, tyCur in my program) which are
already calculated when traversing grid. Therefore, we only need one loop in BBox::IntersectP.
Overall we can have speed up from 3.0s to 2.4s for landsea-big using single core.
 I also tried some complicated data structure to speed up the intersection. Since KD-tree has
been shown to be a very good data structure, I tried integrating KD-tree with 2D-DDA. (the codes
are in heightfield2-KD.*) I wrote a 2D KD-tree with each leaf node being a sub-grid. For traversal,
I follow the procedure in pbrt for KD-tree and in each leaf node I use 2D-DDA for intersection.
Although being very complex in coding, it does not have any speed-up but slightly slows down the
intersection test. (2.4s to 2.5s in landsea-big) I did some further research in counting the grids
traversed in the simple 2D-DDA. I found that for landsea-big, the averaged number of cells
traversed by rays that intersect the heightfield bounding box (otherwise will simply return false), is
only 9.75 including both sea and land. This is very small since there are about 1000000 grids. To
gain speed up from KD-tree, each leaf node must be as small as something like 4 * 4. But then, the
tree would be too big thus having a lot of overheads. (Another statistical fact is that in the simple
2D-DDA, the average number of entering two-triangles intersection test per box-hitting ray is only
1.01. This explains the speed up of using bounding box per cell)
 The third method I have tried is a variant of 2D-DDA. Instead of walking a cell at a time, it
feels faster to jump more cells when you can. Therefore I create a bounding box for each
overlapping 3*3 cells (16 points). Each time the ray does not intersect with the bigger BBox, we
can jump right out of the bigger cell (it will always contract >= 3 jumps into 1 jump, thus saving >= 2
jumps). Otherwise we follow the usual mechanism of 2D-DDA, i.e. one grid at a time with single-
cell BBox speed-up. The codes are in heightfield2-3J.*. This mechanism indeed lower the
averaged number of cells traversed from 9.75 to 4.29. But similar to KD-tree speed-up, it still yields
slightly longer training time (2.4s to 2.5s for landsea-big). This may due to the overhead of
creating the bigger bounding boxes and the overhead of checking the intersection with this bigger
bounding box. Also, jumping through more cells take more computations than moving through one,
which takes only one float addition and an int increment. However when jumping through several
cells, we have to move both x and y, which would take more float addition and even needs a float
multiplication.
 Although I have tried a few different approaches, the simple 2D-DDA with a small modification
yields the best performance. Later on, I will consider only the first approach.

II. Smooth shading algorithm
This part is more standard, for each vertex on the grid, I calculate the average dpdu and dpdv
based on the six adjacent triangles (there are less adjacent triangles for boundary points). Then in
GetShadingGeometry, for a point on the triangle, it’s dpdu and dpdv are redefined as the
weighted average of dpdu and dpdv on the three triangle vertices. The weighting is the point’s
barycentric coordinate on the triangle. Then the normal of the point is calculated based on it’s

dpdu and dpdv. At first I interpolate only the normal, although doing so the picture is not much
different than now, the surface is a little bit less smooth.

III. Performance Evaluation
The operating system for experiments is Mac OS. The processor is 4 GHz Intel Core i7 with
memory 16GB 1600MHz DDR3. Cores detected by pbrt is 8 cores. The result for single-cores
(--ncores 1) and 8-cores (default) are both shown, denoted as (1) and (8). Real time is shown.

IV. All Results (6 + 12)
PBRT Default My heightfield My heightfield w/ Phong

landsea-0 landsea-1 landsea-2 landsea-b texture hftest

Default HF (1) 1.202s 1.301s 1.140s 6.573s 0.766s 0.177s

My HF (1) 1.145s 1.180s 1.088s 2.406s 0.682s 0.171s

My HF w/ P (1) 1.152s 1.190s 1.098s 2.450s 0.690s 0.175s

Default HF (8) 0.457s 0.487s 0.459s 4.884s 0.235s 0.059s

My HF (8) 0.445s 0.449s 0.442s 0.907s 0.208s 0.059s

My HF w/ P (8) 0.444s 0.450s 0.444s 0.935s 0.211s 0.059s

