Supplementary Materials:

A Unified Algorithm for One-class Structured Matrix Factorization with Side Information

Supp-1 Detailed Derivations of Algorithms
Supp-1.1 Detailed Derivation of L~ (vec(W))
From (4), (6), and (7), we have

- H\/W aly,l - XWHT \/WH
=tr ( diag(q) (al,1,, — HW ' X ") diag(p) x
(al,,1, — XWH")y/diag(q))
=tr (((’11”1; - HWTXT) diag(p)x
(al,,1, — XWH")diag(q))
= ‘51"((’121711;;T diag(p)1,,1, diag(q))
+tr(HW ' X T diag(p) XWH " diag(q))
—2tr(al,1,, diag(p) XWH " diag(q)),

where 1,, and 1,, are vectors of ones with order m and n,
respectively, and tr(-) denotes the trace of a matrix (i.e., the
sum of diagonal entries).

L™ (vec(

Supp-1.2 Gradient Calculation Vg(w)
The following property is useful in subsequent derivations.
Property 1. Let X = [z1,...,@n]", H=[hy,...,h,]T,
and D € R™*™. We have
X"DH = Zaz Dj;h] (1.1
ij

From (7), the gradient of g(w) is

Vg(w) = VLT (@) + VL™ (@) + A\ VR (W),
where
VIt@) = > fEy = Y vee(tf win])
(i.j)€Q+ (i.5)eQ+
= vec(X 'DVH). (1.2)

The last equality follows from (1.1), Ej; is the abbreviation
ofKJr (Y;j, @' &;;) and,
/ ..
D¥ E;; . V(i,j) € QT
t 0, otherwise.
Similar to the situation of computing L+ () in Section 3.1,
if B = XW has been calculated, then constructing a sparse

matrix DT requires only O(]Q2" |k) operations and O(|27])
space. With a similar derivation in (1.2), we have

VL™ (w) = vec(X D™ H),
is a dense m x n matrix with D;; =
[n]. From the definition of £~ (-, ) in

where D~
¢, Y(i,5) € [m] x
©),

9 -(a,v)

% = 2piq;(b—a)

= 05 = 2pig; (@ &y — @) = 2pjq ((XWHT)Z.J, _ a),

Thus, we have

D~ =2diag(p)(XWH' —al,,1,) diag(q).
Straightforward computation of entire D~ requires
O(mnk + nnz(X)k) time and O(mn) space; both re-

quirements are infeasible for large values of m and n.
Fortunately, VL™ (w) = vec(X "D~ H) can be computed

without explicitly forming D~ as follows:
X'"DH
=2X " diag(p) XWH " diag(q)H
—2aX " diag(p)1,,1, diag(q)H (1.3)
=2X " diag(p) (XW) (H ' diag(q)H) —2a (X "p) (¢' H),
T . T T

where B, M, d, and k are the same matrices/vectors used
in the objective value evaluation introduced in Algorithm 1.
Combining (1.2), (1.3), and w = vec(W), Vg(w) can be
computed using the following sequence of matrix-matrix
products:

Vg(w) = vec(X 'DTH + X" D™ H + A\, VR 5(w))
= vec (X '[D" H+2diag(p)(BM) + 2\, Ay LB]
+2X\,W —2adk "),
where the last equality follows from (1.3) and
VRa(w) = 2vec((I + Ay X T LX)W)
=2vec(W + A\, X " LB).

Thus, the cost is

O(mnz(X)k + |QF |k + nnz(L)k + mk® + dk)  (1.4)

time. A detailed procedure is shown in Algorithm 2. Note
that if the computation of Vg(w) follows immediately after
the objective value evaluation of the same w, then M, d, q,
k, and B can be re-used to save additional computation.2

Note that we may use a different sequence of matrix-
matrix products for (1.3) if the number of features d is very
small such that

d? + dk < mk. (1.5)

By pre-computing M = X' diag(p)X in O(nnz(X)d)
time and storing it in O(d?) space, the following sequence
to compute Vg(w),

Vg(w) = vec(X 'DTH + X"D™H + A\, VR (w))
=vec (X (DTH + 2\, A\¢LB) +2MW M
+2X\, W —2adk "),
costs
O(mnz(X)k + |QF |k + nnz(L)k + d*k + dk?)
time, which is smaller than that in (1.4) because of (1.5).

2diag(p)(BM) can also be re-used.



Supp-1.3 Hessian-vector Multiplication V2g(w)3

Given a current point w and a vector 5 € R%, computing
V2g(w)s is a common operation required in many iterative
optimization algorithms such as conjugate gradient. Let S €
R4** be the matrix such that § = vec(S). From (7), we
have

V2g(w)3 = V2L (w)§ + VAL ()3 + Ay V2R3 (0)35,
where
Vit )s= Y 0 wyE
(1,7)eQt
= Z @'j'/((hjth) ® (:L‘Zscj)) vec(S)
(i,4)€Qt
= Z vec(ﬁ;-;”miw;rShjh;r) (1.6)
(i,5)ext
= Z vec(x; K;;-”:n;rShj h;r)
(.)€t T
=vec(X UTH). (1.7)

Note that (1.6) is from (4), (1.7) is from (1.1), U is a sparse
matrix with

— {z;”wIShj, V(i, 5) € O,
K 0 otherwise,
5" = vy, wT:c”) V(i,j) € QF. Similar to
the gradient computation, ij can be computed in O(k)
time if B = XW is pre-computed. To efficiently compute
Uw’ Y(i,5) € QF, we first compute a matrix-matrix prod-
uct XS in O(nnz(X)k) time and store it in an m x k ma-
trix N = [...,n;,...]" such that n; = STx;. Then the
entire sparse matrix U™ can be constructed in O(|Q" |k +
nnz(X)k) time.
With a similar derivation as above, we have

VAL~ (w )sfvec(XTU H),

and

where U ~ is a dense m X n matrix with
U;; = ;"] Shy, ¥(i,j) € [m] x [n].
From the definition of £~ (-, -) in (6),

0% _ _
abg glj( b) - 2pZQ_]7 Vb = Eij/, = 2]71%

Thus, we have
U~ = 2diag(p)XSH " diag(q).

Similar to the situation in the gradient computation, com-
puting V2L~ (w)§ = vec(X "U~H) can be done without
forming the entire U ~ explicitly as follows:
XTU™H =2X" diag(p) (XS) H' diag(q)H, (1.8)
—— ——

N M

where NV is available when we construct the sparse matrix
U, and M can be pre-computed and stored (same M in
the objective value evaluation and gradient computation).
Combining (1.7), (1.8), and w = vec(W), V2g(w)s can
be computed using the following sequence of matrix-matrix
products:

V2g(w)§ = vec(X TUTH + X "U™H + A, VR g(W)3)
= vec(X " [UTH + 2diag(p)NM]| + X\, V>R (w)8)
= vec(X "[UTH + 2diag(p) NM + 2A,A\gLN| + 2),,S),
where the last equality follows from

V2R ()8 = 2vec(S + A\, X TLXS)

= 2vec(S+ Ay X 'LN).
Thus, the cost is
O(nnz(X)k + [QF |k + nnz(L)k + mk® + dk)

time. Note that we can move the computation of

éj;”, V(i,7) € QF into the pre-processing phase to save
some repeated operations when the Hessian-vector products
are performed many times with the same w, a common situ-
ation in iterative optimization algorithms such as conjugate

gradient. Further, when the squared loss £(a, b) = (a—b)? is

used, for entries in QF, EZJ;” = 2(1—p,q;) is independent of
the choice of w and can be pre-computed in the beginning
of the entire optimization procedure. A detailed procedure is
presented in Algorithm 3.

Similar to the gradient calculation, when &2 + dk < mk,
we can reduce the cost by usmg another sequence of matrix-

matrix products to compute VZg(w)3 in
O(|¥ |k + nnz(X)k + nnz(L)k + d*k + dk?)
time with M = X T diag(p)X as follows:
X" (UYH + 2 yAgLN) + 2MSM + 2X,,S.

Supp-1.4 Line Search Procedure and Trust
Region Method

Line search procedures and trust region methods are two
common techniques to determine a step size and guarantee
the asymptotic convergence for an optimization algorithm.
In this section, we briefly introduce how to apply these two
techniques to (7).

Line Search Procedure A line search procedure is used to
ensure the sufficient decrease of the objective function value
after a search direction AW is given. Common choices for
the search direction include the negative gradient direction
and the Newton direction. However, even if AW is a descent
direction, g(WW + AW) is not necessary smaller than g(W).
Thus, in a backward line search procedure, we try a sequence
of step size o = 1,3, 3%, ..., with 3 < 1 such that

gW + aAW) < g(W) + ca(Vg(W),AW), (1.9)

where o < 1/2. Note that even with our proposed efficient
function value evaluation procedure (Algorithm 1), recalcu-
lating function value at W + o AW for each « can still be
expensive.



We propose an effective trick to reduce the cost for line
search by taking that 'lI]TIiij is a linear function of w,

¢ (a, w ' &;;) is a quadratic function of @' &;;, and R (w)
is a quadratic function of w. The idea is to have
g(W + aAW)
=LT(W + aAW) + L™ (W 4+ aAW) + A\ R(W + aAW)
=g(W) — LT (W) + LT (W + aAW) + aVal_1 + a*Val 2,

where Val_1 and Val_2 can be calculated with the cost of
one function evaluation. If these two values are available,
then the sufficient decrease condition in (1.9) can be easily
checked as follows.

g(W + aAW) — g(W)
=—LY(W)+ LT (W + aAW) + aVal_1 + o*Val 2
<oa(Vg(W),AW).

Moreover, when the line-search procedure terminates, we
have the next iterate W + o AW and the new function value.
From (8)-(13) in the main text,

L=(W + aAW)
=a*(p'1,,)(q"1,,) + (B + aAB, diag(p)(B + aAB)M)
—2ad" (W + aAW)k
=L~ (W) + o*(AB, diag(p) ABM)+
a((AB, diag(p)BM)+(B, diag(p) ABM)—2ad " AWk)
and
R(W + aAW)
- tr((W +aAW)T (W + aAW))
+ tr((B +aAB) LB+ aAB))
=R(W) + a(2tr(WTAW + A\;B"T LAB))
+ o’ tr(AW TAW + \,ABTLAB),
=R(W) + a(2(W, AW) + 2)\,(B, LAB))
+a? (AW + A, (AB, LAB) ).
where
AB = XAW.

The above calculation shows that in addition to the matrix
B, we can maintain

M= diag(p)BM, and L=LB.

Before the line-search procedure,

AB = XAW, (1.10)
AM = diag(p)ABM, (1.11)
AS =d" AWk, and (1.12)

AL = LAB (1.13)

are calculated. Then
Val.l = (AB,NT) + (B, ANI) — 2aA
+ 20 (W, AW) +3,(B, ALY),
Val 2 = <AB, AM>
e (|\AW||§ + )\g<AB, A£>).
Clearly, the computation for (1.10)-(1.13) costs
O(nnz(X)k + mk® + dk + nnz(L)k),

which is the same as the cost of one function evaluation.
For Val_l and Val_2, the cost O(dk + mk) is much smaller.
To check the sufficient decrease condition (1.9), we pre-
calculate Vg(W)T AW before the line-search procedure,
so the calculation under an « is O(|Q7"|k) for calculating
LT (W + aAW).

If the squared loss is considered on entries in Q%, the
same technique for calculating L~ (W + aAW) can be ap-
plied for calculating L™ (W + aAW). Then the O(|Q"|k)
cost is needed only before the line-search procedure rather
than at each step of checking an « value.

Trust Region Methods Trust region method is an alterna-
tive technique of line search to guarantee asymptotic conver-
gence, which is also widely used in many machine learning
applications (Lin, Weng, and Keerthi 2008). At the ¢-th it-
eration of a trust region method, we have the current iterate
wt, a size At of trust region, and a quadratic model ¢;(§)
as the approximation of the value g(w’ + 3) — g(w?’). Two
common choices for ¢;(§) are the first-order approximation

@(8) = Vg(w') " 5+ %ng (1.14)
and the second-order approximation
0:(3) = Vg(w') 5+ %éTWg(wt)g. (1.15)
Next we find 8! to approximately solve
Hiﬁiﬂt q1(8)- (1.16)

If (1.16) is the choice, we can apply conjugate gradient to
obtain &' with our efficient Hessian-vector product proce-
dure in Algorithm 3. In Algorithm 4, we present a detailed
conjugate gradient procedure to solve (1.16). See Lin, Weng,
and Keerthi (2008) for more details about the convergence
property and the implementation issues of Algorithm 4.
We then update w! and A as follows:
N wt+5  if pt >,
@it = { 2 P = To

1.17
w otherwise, ( )

(o1 min(||8"[], A?), 02 AT if pt <y,
[01AF, 03 A] if p* € (n1,m2),
[At,UgAt} lfpt Z ’1727

At e

(1.18)



where p’ is the ratio of the actual reduction in the function
to the predicted reduction in the quadratic model:

g’ +3") —g(w')
q:(8") 7
and 1y, n1, 12, and o1, 02, 03 are pre-specified positive con-
stants such that 171 < 2 < land 01 < 02 < 1 < o3. The
idea behind a trust region method is that if the ratio pt is
large enough, we can accept the current step ¢ and enlarge
the size of trust region A?; otherwise, we reject the current
step and shrink the size of trust region. More details can be
found in Lin, Weng, and Keerthi (2008).

We can see that the computation of the ratio p’ requires a
function value evaluation at g(w" + 8') and ¢;(8"). To com-
pute g(w' + §'), we can apply Algorithm 1. To compute
q:(8"), we can utilize our proposed algorithms as subrou-
tines to perform a straightforward computation. For exam-
ple, assume the second-order approximation in (1.15) is con-
sidered and the conjugate gradient described in Algorithm 4
is applied to solve (1.16). In the procedure in Algorithm 4,
Vg(w') is required as an input. Further, we have the final
residual vector

P = V(s ) = —Vg(w') — V2g(w')s"

available when Algorithm 4 terminates, where ¢* is the num-
ber of CG iterations performed, and 5 = 5° . Then, we can
compute

in O(dk) time.

Supp-1.5 Complete Optimization Procedures

With the efficient procedures proposed in Section 3, we are
able to implement many optimization algorithms to solve (7)
such as gradient descent with line search, nonlinear conju-
gate gradient, truncated Newton methods with line search,
and trust region Newton methods. To illustrate how Algo-
rithms 1-3 are used in practice, in Algorithm 5, we use a trust
region Newton method (TRON) (Lin, Weng, and Keerthi
2008) as an example to show the complete optimization pro-
cedure.

We give another Algorithm 6 to demonstrate the use of
line search in a gradient descent method for solving (7). Note
that we use a Newton direction in Algorithm 5 and a nega-
tive gradient direction in Algorithm 6, respectively, though
in either algorithm any descent direction can be considered.

Algorithm 4 Conjugate gradient procedure to approxi-
mately solve the trust-region subproblem (1.16).

Input: Vg(@"), a relative stopping parameter £ < 1, and a size
of trust region A’ > 0
Output: 5' =5 and 7’ = —Vg(w') — V2g(w')s"
1: // Initialization

2:8°=0 // initial point
3: 70 = —Vg(w") // initial residual
4: d® =" // initial direction
5: fori=0,1,2,3,...(CG iterations) do

6 if ||| < ¢[[r°] then

7: Stop the for loop and return &' = &% and r*

8: Compute and store V2 g(u?t)di by Algorithm 3

9: al = Hri||2/<di, Vig(w')d")
10 &' =35 +a'd
11:  if|[3""!]| > A’ then
12: Compute 7 such that ||8° + 7d'[| = A*
13: st =5 +rd
14: ritl =t — 7V2g(w")d’
15: Stop the for loop and return ' = 57! and 7**!
16: rith =t — o' Vig(w")d"
170 B = [l )
18:  d't ="t 4 g




Algorithm 5 A trust-region Newton method for (7).

Input: feature matrix X =

RN HED2N

0 =0 (i, 6] ), VG, ) €
: fortf1,2,3,...do

[®1,...,2m] " € R™*? label ma-
trix Y = [y1,...,ym] € R™ ", H € R™ ", and pa-
rameters k, Aw, Ag, P, @, G, and an initial size A > 0 of
trust region. Choose positive constants 179,71 < 72 < 1 and
o1 <o02<1<os.

M = H" diag(q)H -~ O(nk?)
d=XTp -+ O(nnz(X))
k=H'q -~ O(nk)
: Compute p' 1,, and ¢' 1, O(m+n)
B=XW,where B=1[--,b;,---]" -+~ O(nnz(X)k)
M = diag(p)BM - O(mk?)
s=d"Wk O(dk)
L=1LB .- O(nnz(L)k)
=3 ear bii(Yig, bl hy) o(|r*|k)
S L =a(p 1) (g 1) + <B, M> — 2as O(mk)
obj= LT+ L7 + Ay (||W|\§ + )\g<B, L>)
- O(dk + mk)
: // Compute gradient
© Dy =5 (Y, b] hy), V(i 5) € QF o(|*|k)
. G=X"(D"H +2M) O(|Q* |k+nnz(X)k-+mk?)
C G =G —2adk” + 2 A\ XL
-+ O(dk 4+ nnz(X)k)
: // Pre-processing for Hessian-vector products

o(|a*[k)

// Solve (1.16) approximately

Get §=vec(S) and 7" = vec(R) by Algorithm 4 with A
// Compute q:(8)
a(3) = —3(=(G,8) = (R,S5)) -+ O(dk)
// Compute g(w" + 3)
Whew =W + S -O(dk)
Bnew = XWnew (IlIlZ(X)k)
M = diag(p) Buew M O(mkz)
§=d" Whaewk -~ O(dk)
I = LBuew (nnz(L) )
L = Z(i,j)egﬁ— i (Yij, (wnew):hj) { ‘ )
L™= (" 1m)(q"1n) + (B, M> — 2a6
-+ O(mk)
obj,.. = L* + L™ + A (||Wnew\|; n )\9<Bnew, L>)
-+ O(mk + dk)
p = (0bjye, — 0bj)/qe(8) ~-0(1)
Update A based on p and (1.18) --0(1)
if p > 1o then
Obj = ObanW e O(l)
W = Whew -+ O(dk)
B = Bpew -+ O(mk)
// Compute gradient
D, = ¢ (Yi;,b] hj),¥(i,5) € QF - 0(]Q*|k)

G =X"(D"H +2M)
O(|0" |k4nnz(X)k+mk?)
G =G —2adk’ +2 A\, X L
-+ O(dk 4+ nnz(X)k)
// Pre-processing for Hessian-vector products

0 = 05 (i, bl hy), V(i 5) € QF - 0|7 k)

Algorithm 6 A gradient-descent method with backtracking
line search to minimize (7).

Input: feature matrix X =

PR R R

[@1,...,2n,]" € R™*?, label ma-

trix Y = [y1,...,Ym] € R™*", H € R"**, and parame-
ters k, Aw, Ag, P, @, and @. Choose 8 < 1 and o < 1/2.
M = H' diag(q)H O(nk?)
d=X"p O(nnz(X))
k=HTgq -O(nk)
Compute p'lnandg' 1, --O(m+mn)
B=XW,where B=1[--,b;,---]" O(mk?)
M = diag(p)BM O(mk?)
L=LB -+-O(nnz(L)k)
LT =Y syear Lis(Yis, bl hy) O(|2" k)
fort=1,2,3,...do

// Compute gradient

D, =/ (Yi;,b] hy), V(i j) et o] k)

G=X"(D"H+2M)---O(]a* yk+nnz X)k+mk2)

G =G —2adk" + 2\, ), XTL -O(dk + nnz(X)k)

// Obtain a descent direction AW

AW = -G

// Perform backtracking line search

AB = XAW -+-O(nnz(X)k)

AM = diag(p)ABM O(mk?)

AS=d"AWE -~ O(dk)

AL =LAB O(nnz(L)k)

Val -1 =(AB, M )+ (B, AN _oans
+2), ((W, AW + /\g<B, A£>). - O(dk + mk)

Val 2 = <AB,AM>
30 (AW I3 + A (AB, ALY ) - O(dk +mk)
=(G,AW) O(dk)
fora=1,3,53%...do
Bncw =B + aAB O(mk)
Lifw = Y jyeat s (Y, b Thy)  O(|2F[k)

if —Lt+ L, +aVal_.1+a?Val.2 < aoc then

W =W + aAW -~ O(dk)
B = Buew O(mk)
M = M + aAM -O(mk)
L=L+aAL - O(mk)
Lt =L, ~-0(1)

Break the line-search for-loop




Supp-2 Experimental Details
Supp-2.1 Evaluation Criteria and Data Sources

We used Precision@k and nDCG@QE as evaluation criteria.
For a predicted score vector ¢ € R¥ and the true label vector
y € {0, 1}%, Precision@k is defined as

p@k:% > w

Letoprank,, (g)
and nDCG @k is defined as
Y
pcGak= Y U
l€toprank,, () IOg(l + 1)
DCGQk

nDCGQk = — €G

min(k, ||lyll,) 1

=1 log(I+1)

For multi-label learning, the data sets are downloaded
from Mulan: A Java Library for Multi-Label Learning® and
The Extreme Classification Repository.* To avoid the 0/0
situation in the calculation of nDCG, data instances in the
test set without any active labels (i.e., ||y[|, = 0) are re-
moved. For recommender systems with graph information,
the data sources have been mentioned in the main text.

Supp-2.2 Parameter Selection

To select a suitable set of parameters, we hold out 1/5 of
the training instances for multi-label problems. Similarly,
we hold out 1/5 of the observed entries for graph structured
one-class MF. The chosen parameters are those that give the
highest validation performance on the hold out set. Since
the best parameter for different measures (p@1 to p@>5) may
slightly vary, we used the one corresponding to the highest
p@b5. However, if the best parameter for p@5 has a very bad
performance for other measures on the hold out set, we will
choose the second best parameter for p@5.

For our methods, we fix @ in (3) to —1 because of the
following reasons. First, for LR-wLR, we have

G (Y &) = (Yij, " &)
= log(l + efy”ﬁ’T‘%”),
where Y;; = =£1. Therefore, for (¢,j) € Q7,its ¥;; = a
should be —1. For other formulations such as LR-wSQ, we
have . .
0 (Yij, 0 &) = (a—w &5)%

The logistic loss £ (Y;;, %@ " &;;) intends to have

.o e~ T ~
(i,7) € QT ifw'&; >0,
but for the squared loss £~ (Y;;, @ &;;), it intends to have
.. _ o ~T~
(i,j) €~ ifw &;; =0.

Clearly, a conflict occurs when ’lIJTii‘ij > 0 but & 0. On
the other hand, for LEML (Yu et al. 2014), which is SQ-
SQ, we use a = 0 in order be consistent with their ex-
periment setting. For our methods that include a weighted

3http://mulan.sourceforge.net/datasets-mlc.html

*https://manikvarma.github.io/downloads/XC/XMLRepository.html

loss (SQ-wSQ, LR-wSQ and LR-wLR), p;q; in assump-
tion (3) is set to a constant p. We perform a grid search for
log,(p) € {-9,—7,-5,-3,—1,0}. For Subsampled ap-
proaches, we fix p = 1 and perform the grid search on the
ratio |Q~|/|QF| € {0.25,0.5,1, 2}.

For regularization parameters A, and \j, we set

Aw = Ap and perform a grid search on logy(A,) €
{-6,—4,-2,0,2,4,6}. For problems without graph infor-
mation, we set A, = 0. For problems with graph infor-

mation, A\, is non-zero and is obtained by a grid search
on logy(AgAyw) € {—6,-3,0,3,6,8,10}. We consider the
same setting for LEML.

For the kernel Nystrom method in the last experiment, we
use the same regularization and weight-loss parameters se-
lected earlier for the setting without the Nystrom method.
For the Gaussian kernel K (z,y) = exp(—v|z — y|°) .
we check v € {0.5/0%,1/02,2/0?}, where 2 is the vari-
ance of all feature values in the entire training data set. We
also conduct a grid search on the number of columns using
D e {500,1000}.

For all one-class MF formulations, we run 15 alternating
iterations in our validation process and obtain the validation
performance at each iteration. We then use the iteration in-
dex yielding the best validation performance as the number
of iterations to be run in training a model for predicting the
test set. Note that the held-out validation set is included so
we use the whole training set for generating the final model.

For the non-linear method SLEEC, since it includes 8
hyper-parameters, a grid search on this high dimensional
space is not easy. Therefore we first fix the number of clus-
ters to 1. Then the number of learners also becomes 1 be-
cause the use of several learners is due to the randomness in
clustering. Next we conduct a grid search on the two most
sensitive parameters: the k£ in kNN and the number of neigh-
bors considered during the singular value projection method
as suggested by the paper. For all other parameters we use
the suggested values given by the authors.

Supp-2.3 More Experimental Results

The results are shown in both tables and figures.

e In Figure Supp-1, we show the results of Full versus Sub-
sampled for multi-label learning in bar charts.

e In Figure Supp-2 and Figure Supp-3, we show the results
of various loss functions for three types of one-class MF
problems in bar charts.

e In Figure Supp-4, we show the results of the comparison
of non-linear multi-label classifiers in bar charts.

e In Table Supp-1, we show the detailed results of recom-
mender systems with and without graph information in
terms of precision@]1 to precisions@5 and nDCG@1 to
nDCG@5.

e In Table Supp-2, we show the detailed results of the
comparison among non-linear multi-label classifiers in
terms of precision@]1 to precisions@5 and nDCG@1 to
nDCG@5.

o In Table Supp-3, we show the detailed results of the multi-
label learning in terms of precision@1 to precisions@5
and nDCG@1 to nDCG@5.
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Figure Supp-1: Full v.s. Subsampled on multi-label learning with various loss functions. See Figure 1 for the legend informa-

tion.
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Figure Supp-2: Comparison on various loss functions. Y-axis is the improvement of Precision@k over the SQ-SQ formulation
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Figure Supp-3: Comparison on various loss functions. Y-axis is the improvement of nDCGQ@Fk over the SQ-SQ formulation in

percentage.
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Figure Supp-4: Comparison on non-linear multi-label classifiers.



Table Supp-1: Comparison on graph structured one-class MF. Loss1-Loss2 denotes the formulation with the Loss1 on entries
in Q" and Loss2 on entries in 2~. wSQ/WLR denote the weighted square/logistic loss functions respectively. Note that the
SQ-SQ formulation for the graph structured one-class MF part is equivalent to the formulation considered in Rao et al. (2015).

(a) Precision@k (b) nDCGQE
time p@l p@2 p@3 p@4 p@5 n@Ql n@2 n@Q3 n@4 n@5
Standard one-class MF Standard one-class MF
SQ-SQ 1.2 2693 2220 20.00 1847 1695 2693 2399 23.00 22.84 22.54
SQ-wSQ 09 2856 2399 21.16 1948 18.04 28.56 2598 24.88 2472 24.59
ml100k LR-wSQ 1.8 3098 25.61 22.04 20.41 18.80 3098 27.76 26.00 25.75 2542
Graph structured one-class MF Graph structured one-class MF
SQ-SQ 1.3 2855 24.62 2204 2026 19.05 28.55 26.54 25.57 25.28 25.38
SQ-wSQ 09 30.75 2543 2285 2049 19.12 30.75 27.59 26.73 2599 25.82
LR-wSQ 7.0 3145 26.01 2258 21.21 19.28 3145 28.12 2650 26.55 26.04
Standard one-class MF Standard one-class MF
SQ-SQ 237 1487 1241 1096 10.06 9.35 14.87 1446 1444 1464 14.84
SQ-wSQ 512 1746 1479 13.09 12.05 11.19 1746 1733 17.51 17.94 18.26
flixster LR-wSQ 161.3 20.54 16.89 14.74 13.34 12.34 20.54 20.33 2044 20.72 21.04
Graph structured one-class MF Graph structured one-class MF
SQ-SQ 274 14.66 1237 1097 10.06 9.35 14.66 1435 1438 14.59 14.78
SQ-wSQ 54.0 18.28 1534 13.60 1242 11.53 18.28 18.16 18.43 18.80 19.15
LR-wSQ 180.6 20.58 1691 14.77 1336 12.36 20.58 20.36 20.50 20.77 21.08
Standard one-class MF Standard one-class MF
SQ-SQ 648 1742 1507 13.56 1247 11.62 1742 1584 1497 1444 14.09
SQ-wSQ 100.3 18.13 1597 1447 13.35 1248 18.13 16.74 1593 1543 15.13
douban LR-wSQ 5143 19.71 17.59 16.12 15.03 14.16 19.71 1844 17.78 17.45 17.29
Graph structured one-class MF Graph structured one-class MF
SQ-SQ 583 18.89 16.61 15.07 13.97 13.11 18.89 1741 16.60 16.14 15.89
SQ-wSQ 75.0 19.27 17.12 15.58 1447 13.56 19.27 1793 17.14 16.71 1645
LR-wSQ 5714 20.23 18.02 16.57 1544 14.53 20.23 18.89 18.24 17.88 17.70
Table Supp-2: Comparison of state-of-the-art approaches on multi-label learning.
(a) Precision@Q¥k (b) nDCGQE
time p@l p@2 p@3 p@Q4 pQ@5 n@l n@2 n@Q3 n@4 nQ@5
LR-wSQ 22 6322 4843 39.89 33.83 29.50 63.22 59.59 59.93 6124 6273
bibtex LR-wSQ-Nys 54 6326 48.33 3991 33.80 29.55 63.26 59.53 5997 6121 6281
FastXML 17 63.62 47.89 39.22 3339 29.01 63.62 5949 59.55 60.87 62.16
SLEEC 249 6529 4897 39.63 3324 28.76 65.29 60.87 60.62 61.46 62.52
LR-wSQ 23 6747 6424 61.85 59.25 56.73 6747 6499 63.16 6123 59.40
delicious LR-wSQ-Nys 94 69.64 66.74 64.11 6135 58.84 69.64 6741 6543 6339 61.54
FastXML 34 7090 67.14 6452 61.87 59.63 7090 68.05 66.04 64.06 62.40
SLEEC 1,124 69.27 65.10 62.03 59.49 56.82 69.27 66.11 63.78 61.84 59.89
LR-wSQ 61 87.77 8096 70.08 61.48 55.15 87.77 8396 78.60 7597 75.28
mediami”LR-wSQ-Nys 144 88.72 82.08 71.85 63.70 57.08 88.72 85.17 80.29 78.10 77.32
FastXML 256 88.04 81.12 70.29 62.06 55.48 88.04 84.10 78.81 76.48 75.61
SLEEC 1,764 89.34 8233 72.09 63.73 57.34 89.34 85.60 80.73 78.36 77.73
LR-wSQ 404 7843 71.21 6582 60.67 55.64 7843 72.84 6897 6591 63.96
eurlex LR-wSQ-Nys 1,134  79.20 71.75 66.15 60.75 55.80 7920 7344 69.41 66.15 64.25
FastXML 164 7729 69.17 62.63 5684 51.44 7729 71.00 66.25 62.60 60.19
SLEEC 1,497 76.67 67.80 60.71 5445 49.34 76.67 69.80 64.61 60.58 58.28
LR-wSQ 449 85.07 77.50 7133 66.14 61.85 85.07 79.21 7447 7046 67.10
LR-wSQ-Nys 666 84.72 77.20 71.05 6622 61.86 84.72 7890 74.18 7041 67.02
wiki10 FastXML 744 8291 74.63 67.82 62.06 57.73 8291 7650 7127 66.83 63.37
SLEEC 183 8552 78.65 72.00 65.81 60.75 85.52 80.20 75.16 70.48 66.55



Table Supp-3: Comparison of various Full and Subsampled formulations on multi-label learning. Loss1-Loss2 denotes the
formulation with the Loss1 on entries in Q1 and Loss2 on entries in Q~. wSQ/WLR denote the weighted square/logistic loss

functions respectively. Note that the Full approach with SQ-SQ is equivalent to the LEML (Yu et al. 2014) formulation.

(a) Precision@k
time pQl p@2 p@Q3 pQ@4

p@5

(b) n(DCGQE
n@Ql n@2 n@3 n@4 n@5

bibtex

the Subsampled approach
SQ-SQ 12 46.04 23.16 31.31 27.59
LR-LR 9 5292 3942 3263 2827
the Full approach
SQ-SQ 13 63.14 47.58 38.77 33.09
SQ-wSQ 12 63.30 4835 39.78 33.74
LR-wSQ 22 63.22 4843 39.89 33.83
LR-wLR 85 6191 46.66 3821 32.66

24.63
25.08

28.81
29.37
29.50
28.43

the Subsampled approach
46.04 4547 46.71 48.87 50.66
5292 49.17 49.59 51.32 5294
the Full approach
63.14 5899 5895 6034 61.71
63.30 59.61 59.96 61.26 62.65
63.22 59.59 5993 6124 62.73
6191 57.75 5791 5940 60.76

delicious

the Subsampled approach
SQ-SQ 8§ 53.80 5242 5046 49.13
LR-LR 19 63.89 60.86 58.44 55.95
the Full approach
SQ-SQ 3 6688 6344 61.09 58.84
SQ-wSQ 8 66.81 63.55 61.29 59.01
LR-wSQ 23 6747 6424 61.85 59.25
LR-wLR 446 6791 65.04 6227 59.81

4741
53.43

56.51
56.52
56.73
57.27

the Subsampled approach
53.80 5273 51.28 50.26 49.02
63.89 61.56 59.71 57.84 55.99
the Full approach
66.88 64.24 6242 60.72 59.03
66.81 6431 62.57 60.86 59.07
67.47 6499 63.16 61.23 59.40
6791 6574 63.68 61.85 59.99

mediamill

the Subsampled approach
SQ-SQ 83 8320 79.21 69.62 61.66
LR-LR 93 87.62 80.72 69.87 61.37
the Full approach
SQ-SQ 8 87.70 81.05 69.89 61.23
SQ-wSQ 41 84.85 79.82 6992 61.79
LR-wSQ 61 87.77 8096 70.08 61.48
LR-wLR 437 87.78 81.17 70.38 61.85

55.50
55.08

54.72
55.47
55.15
55.33

the Subsampled approach
83.20 81.59 77.17 75.10 74.60
87.62 83.74 7839 7582 75.15
the Full approach
87.70 83.99 7843 7575 74.88
84.85 8241 7775 7557 7492
87.77 8396 78.60 7597 75.28
87.78 84.17 78.87 76.33 75.50

eurlex

the Subsampled approach
SQ-SQ 93 29.75 3094 30.23 29.75
LR-LR 166 44.08 43.09 39.83 37.39
the Full approach
SQ-SQ 335 78.43 70.18 63.67 57.80
SQ-wSQ 672 75.63 69.79 64.60 59.82
LR-wSQ 404 7843 7121 65.82 60.67

29.04
34.58

52.21
55.21
55.64

the Subsampled approach
29.75 30.67 30.38 30.47 30.92
44,08 43.32 41.17 3990 38.99
the Full approach
7843 72.04 67.30 63.63 61.12
75.63 T1.11 67.45 64.66 63.02
7843 72.84 68.97 6591 63.96

wiki10

the Subsampled approach
SQ-SQ 121 1723 16.58 16.14 15.59
LR-LR 764 7630 6329 5528 49.72
the Full approach
SQ-SQ 247 7771 69.58 64.20 60.23
SQ-wSQ 872 78.69 69.97 64.39 60.35
LR-wSQ 449 85.07 77.50 7133 66.14

15.04
45.09

56.45
56.59
61.85

the Subsampled approach
1723 1673 1638 1598 15.56
76.30 66.23 5991 5540 51.62
the Full approach
7771 7142 6720 64.04 61.07
78.69 7194 67.55 6431 61.34
85.07 79.21 74.47 7046 67.10



