
Supplementary Materials:
A Unified Algorithm for One-class Structured Matrix Factorization with Side Information

Supp-1 Detailed Derivations of Algorithms
Supp-1.1 Detailed Derivation of L�

(vec(W ))

From (4), (6), and (7), we have
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ā1m1>

n�XWH>�p
diag(q)

���
2

F

= tr

�p
diag(q)

�
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where 1m and 1n are vectors of ones with order m and n,
respectively, and tr(·) denotes the trace of a matrix (i.e., the
sum of diagonal entries).

Supp-1.2 Gradient Calculation rg( ˜w)

The following property is useful in subsequent derivations.
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From (7), the gradient of g( ˜w) is
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The last equality follows from (1.1), `+ij
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Similar to the situation of computing L+

(

˜

w) in Section 3.1,
if B = XW has been calculated, then constructing a sparse
matrix D+ requires only O(|⌦+|k) operations and O(|⌦+|)
space. With a similar derivation in (1.2), we have
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where D� is a dense m ⇥ n matrix with D�
ij =

`�ij
0
, 8(i, j) 2 [m] ⇥ [n]. From the definition of `�(·, ·) in

(6),
@

@b
`�(ā, b) = 2piqj(b� ā)
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Thus, we have
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Straightforward computation of entire D� requires
O(mnk + nnz(X)k) time and O(mn) space; both re-
quirements are infeasible for large values of m and n.
Fortunately, rL�

(

˜

w) = vec

�
X>D�H

�
can be computed

without explicitly forming D� as follows:

X>D�H

=2X>
diag(p)XWH>

diag(q)H

� 2āX>
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where B, M , d, and k are the same matrices/vectors used
in the objective value evaluation introduced in Algorithm 1.
Combining (1.2), (1.3), and ˜

w = vec(W ), rg( ˜w) can be
computed using the following sequence of matrix-matrix
products:
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Thus, the cost is
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time. A detailed procedure is shown in Algorithm 2. Note
that if the computation of rg( ˜w) follows immediately after
the objective value evaluation of the same ˜

w, then M , d, q,
k, and B can be re-used to save additional computation.2

Note that we may use a different sequence of matrix-
matrix products for (1.3) if the number of features d is very
small such that

d2 + dk < mk. (1.5)
By pre-computing ¯M = X>

diag(p)X in O(nnz(X)d)
time and storing it in O(d2) space, the following sequence
to compute rg( ˜w),
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time, which is smaller than that in (1.4) because of (1.5).
2diag(p)(BM) can also be re-used.



Supp-1.3 Hessian-vector Multiplication r2g( ˜w)
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Note that (1.6) is from (4), (1.7) is from (1.1), U+ is a sparse
matrix with
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entire sparse matrix U+ can be constructed in O(|⌦+|k +
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With a similar derivation as above, we have
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where N is available when we construct the sparse matrix
U+, and M can be pre-computed and stored (same M in
the objective value evaluation and gradient computation).
Combining (1.7), (1.8), and ˜
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products:

r2g( ˜w)

˜

s = vec

�
X>U+H +X>U�H + �wr2Rw̃( ˜w)

˜

s

�

= vec

�
X>⇥U+H + 2diag(p)NM

⇤
+ �wr2Rw̃( ˜w)

˜

s

�

= vec

�
X>⇥U+H + 2diag(p)NM + 2�w�gLN

⇤
+ 2�wS

�
,

where the last equality follows from

r2Rw̃( ˜w)

˜

s = 2vec

�
S + �gX

>LXS
�

= 2vec

�
S + �gX

>LN
�
.
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time. Note that we can move the computation of
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Similar to the gradient calculation, when d2 + dk < mk,
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Supp-1.4 Line Search Procedure and Trust
Region Method

Line search procedures and trust region methods are two
common techniques to determine a step size and guarantee
the asymptotic convergence for an optimization algorithm.
In this section, we briefly introduce how to apply these two
techniques to (7).

Line Search Procedure A line search procedure is used to
ensure the sufficient decrease of the objective function value
after a search direction �W is given. Common choices for
the search direction include the negative gradient direction
and the Newton direction. However, even if �W is a descent
direction, g(W +�W ) is not necessary smaller than g(W ).
Thus, in a backward line search procedure, we try a sequence
of step size ↵ = 1,�,�2, . . ., with � < 1 such that

g(W + ↵�W ) < g(W ) + �↵hrg(W ),�W i, (1.9)

where � < 1/2. Note that even with our proposed efficient
function value evaluation procedure (Algorithm 1), recalcu-
lating function value at W + ↵�W for each ↵ can still be
expensive.



We propose an effective trick to reduce the cost for line
search by taking that ˜
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Moreover, when the line-search procedure terminates, we
have the next iterate W +↵�W and the new function value.
From (8)-(13) in the main text,
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where
�B = X�W.

The above calculation shows that in addition to the matrix
B, we can maintain

ˆM = diag(p)BM, and ˆL = LB.

Before the line-search procedure,
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Clearly, the computation for (1.10)-(1.13) costs

O(nnz(X)k +mk2 + dk + nnz(L)k),

which is the same as the cost of one function evaluation.
For Val 1 and Val 2, the cost O(dk +mk) is much smaller.
To check the sufficient decrease condition (1.9), we pre-
calculate rg(W )

>
�W before the line-search procedure,

so the calculation under an ↵ is O(|⌦+|k) for calculating
L+
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If the squared loss is considered on entries in ⌦
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same technique for calculating L�

(W + ↵�W ) can be ap-
plied for calculating L+

(W + ↵�W ). Then the O(|⌦+|k)
cost is needed only before the line-search procedure rather
than at each step of checking an ↵ value.

Trust Region Methods Trust region method is an alterna-
tive technique of line search to guarantee asymptotic conver-
gence, which is also widely used in many machine learning
applications (Lin, Weng, and Keerthi 2008). At the t-th it-
eration of a trust region method, we have the current iterate
˜

w

t, a size �

t of trust region, and a quadratic model qt(˜s)
as the approximation of the value g( ˜wt
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common choices for qt(˜s) are the first-order approximation
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If (1.16) is the choice, we can apply conjugate gradient to
obtain ˜

s

t with our efficient Hessian-vector product proce-
dure in Algorithm 3. In Algorithm 4, we present a detailed
conjugate gradient procedure to solve (1.16). See Lin, Weng,
and Keerthi (2008) for more details about the convergence
property and the implementation issues of Algorithm 4.
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where ⇢t is the ratio of the actual reduction in the function
to the predicted reduction in the quadratic model:

⇢t =
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,
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. The
idea behind a trust region method is that if the ratio ⇢t is
large enough, we can accept the current step ˜

s

t and enlarge
the size of trust region �

t; otherwise, we reject the current
step and shrink the size of trust region. More details can be
found in Lin, Weng, and Keerthi (2008).

We can see that the computation of the ratio ⇢t requires a
function value evaluation at g( ˜wt

+
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s

t
) and qt(˜st). To com-

pute g( ˜wt
+

˜

s

t
), we can apply Algorithm 1. To compute

qt(˜st), we can utilize our proposed algorithms as subrou-
tines to perform a straightforward computation. For exam-
ple, assume the second-order approximation in (1.15) is con-
sidered and the conjugate gradient described in Algorithm 4
is applied to solve (1.16). In the procedure in Algorithm 4,
rg( ˜wt

) is required as an input. Further, we have the final
residual vector
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available when Algorithm 4 terminates, where i⇤ is the num-
ber of CG iterations performed, and ˜

s

t
=

¯

s

i⇤ . Then, we can
compute

qt(˜s
t
) = �1

2

⇣�
�rg( ˜wt

)

�>
˜

s

t �
�
˜

s

t
�>

r

i⇤
⌘

in O(dk) time.

Supp-1.5 Complete Optimization Procedures
With the efficient procedures proposed in Section 3, we are
able to implement many optimization algorithms to solve (7)
such as gradient descent with line search, nonlinear conju-
gate gradient, truncated Newton methods with line search,
and trust region Newton methods. To illustrate how Algo-
rithms 1-3 are used in practice, in Algorithm 5, we use a trust
region Newton method (TRON) (Lin, Weng, and Keerthi
2008) as an example to show the complete optimization pro-
cedure.

We give another Algorithm 6 to demonstrate the use of
line search in a gradient descent method for solving (7). Note
that we use a Newton direction in Algorithm 5 and a nega-
tive gradient direction in Algorithm 6, respectively, though
in either algorithm any descent direction can be considered.

Algorithm 4 Conjugate gradient procedure to approxi-
mately solve the trust-region subproblem (1.16).
Input: rg(w̃t), a relative stopping parameter ⇠ < 1, and a size

of trust region �t > 0
Output: s̃

t = s̄

i⇤ and r

i⇤ = �rg(w̃t)�r2g(w̃t)s̃t

1: // Initialization
2: s̄

0 = 0 // initial point
3: r

0 = �rg(w̃t) // initial residual
4: d

0 = r

0 // initial direction
5: for i = 0, 1, 2, 3, . . . (CG iterations) do
6: if

��
r

i
��  ⇠

��
r

0
�� then

7: Stop the for loop and return s̃

t = s̄

i and r

i

8: Compute and store r2g(w̃t)di by Algorithm 3
9: ↵i =

��
r

i
��2

/
⌦
d

i,r2g(w̃t)di
↵

10: s̄

i+1 = s̄

i + ↵i
d

i

11: if
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s̄

i+1
�� � �t then

12: Compute ⌧ such that
��
s̄

i + ⌧di
�� = �t

13: s̄

i+1 = s̄

i + ⌧di

14: r

i+1 = r

i � ⌧r2g(w̃t)di

15: Stop the for loop and return s̃

t = s̄

i+1 and r

i+1

16: r

i+1 = r

i � ↵ir2g(w̃t)di

17: �i =
��
r

i+1
��2

/
��
r

i
��2

18: d

i+1 = r

i+1 + �i
d

i



Algorithm 5 A trust-region Newton method for (7).
Input: feature matrix X = [x1, . . . ,xm]> 2 Rm⇥d, label ma-

trix Y = [y1, . . . ,ym]> 2 Rm⇥n, H 2 Rn⇥k, and pa-
rameters k, �w, �g , p, q, ā, and an initial size � > 0 of
trust region. Choose positive constants ⌘0, ⌘1 < ⌘2 < 1 and
�1 < �2 < 1 < �3.

1: M = H> diag(q)H · · ·O(nk2)
2: d = X>

p · · ·O(nnz(X))
3: k = H>

q · · ·O(nk)
4: Compute p

>1m and q

>1n · · ·O(m+ n)
5: B = XW , where B = [· · · , bi, · · · ]> · · ·O(nnz(X)k)
6: M̂ = diag(p)BM · · ·O(mk2)
7: � = d

>Wk · · ·O(dk)
8: L̂ = LB · · ·O(nnz(L)k)
9: L+ =

P
(i,j)2⌦+ `ij(Yij , b

>
i hj) O(

��⌦+
��k)

10: L� = ā2(p>1m)(q>1n) +
D
B, M̂

E
� 2ā� · · ·O(mk)

11: obj = L+ + L� + �w

⇣
kWk2F + �g

D
B, L̂

E⌘

12: · · ·O(dk +mk)
13: // Compute gradient
14: D+

ij = `+ij
0
(Yij , b

>
i hj), 8(i, j) 2 ⌦+ · · ·O(

��⌦+
��k)

15: G = X>(D+H + 2M̂) · · ·O(
��⌦+

��k+nnz(X)k+mk2)

16: G = G� 2ādk> + 2�w�gX
>L̂

17: · · ·O(dk + nnz(X)k)
18: // Pre-processing for Hessian-vector products
19: `+ij

00
= `+ij

00
(Yij , b

>
i hj), 8(i, j) 2 ⌦+ · · ·O(

��⌦+
��k)

20: for t = 1, 2, 3, . . . do
21: // Solve (1.16) approximately
22: Get s̃=vec(S) and r

i⇤=vec(R) by Algorithm 4 with �
23:
24: // Compute qt(s̃)
25: qt(s̃) = � 1

2 (�hG,Si � hR,Si) · · ·O(dk)
26:
27: // Compute g(w̃t + s̃)
28: Wnew = W + S · · ·O(dk)
29: Bnew = XWnew · · ·O(nnz(X)k)
30: M̂ = diag(p)BnewM O(mk2)
31: � = d

>Wnewk · · ·O(dk)
32: L̂ = LBnew · · ·O(nnz(L)k)
33: L+ =

P
(i,j)2⌦+ `ij(Yij , (wnew)

>
i hj) · · ·O(

��⌦+
��k)

34: L� = ā2(p>1m)(q>1n) +
D
Bnew, M̂

E
� 2ā�

35: · · ·O(mk)

36: objnew = L+ + L� + �w

⇣
kWnewk2F + �g

D
Bnew, L̂

E⌘

37: · · ·O(mk + dk)
38: ⇢ = (objnew � obj)/qt(s̃) · · ·O(1)
39: Update � based on ⇢ and (1.18) · · ·O(1)
40: if ⇢ > ⌘0 then
41: obj = objnew · · ·O(1)
42: W = Wnew · · ·O(dk)
43: B = Bnew · · ·O(mk)
44: // Compute gradient
45: D+

ij = `+ij
0
(Yij , b

>
i hj), 8(i, j) 2 ⌦+ · · ·O(

��⌦+
��k)

46: G = X>(D+H + 2M̂)
47: · · ·O(

��⌦+
��k+nnz(X)k+mk2)

48: G = G� 2ādk> + 2�w�gX
>L̂

49: · · ·O(dk + nnz(X)k)
50: // Pre-processing for Hessian-vector products
51: `+ij

00
= `+ij

00
(Yij , b

>
i hj), 8(i, j) 2 ⌦+ · · ·O(

��⌦+
��k)

Algorithm 6 A gradient-descent method with backtracking
line search to minimize (7).
Input: feature matrix X = [x1, . . . ,xm]> 2 Rm⇥d, label ma-

trix Y = [y1, . . . ,ym]> 2 Rm⇥n, H 2 Rn⇥k, and parame-
ters k, �w, �g , p, q, and ā. Choose � < 1 and � < 1/2.

1: M = H> diag(q)H · · ·O(nk2)
2: d = X>

p · · ·O(nnz(X))
3: k = H>

q · · ·O(nk)
4: Compute p

>1m and q

>1n · · ·O(m+ n)
5: B = XW , where B = [· · · , bi, · · · ]> · · ·O(mk2)
6: M̂ = diag(p)BM · · ·O(mk2)
7: L̂ = LB · · ·O(nnz(L)k)
8: L+ =

P
(i,j)2⌦+ `ij(Yij , b

>
i hj) O(

��⌦+
��k)

9: for t = 1, 2, 3, . . . do
10: // Compute gradient
11: D+

ij = `+ij
0
(Yij , b

>
i hj), 8(i, j) 2 ⌦+ · · ·O(

��⌦+
��k)

12: G = X>(D+H +2M̂) · · ·O(
��⌦+

��k+nnz(X)k+mk2)

13: G = G� 2ādk> + 2�w�gX
>L̂ · · ·O(dk + nnz(X)k)

14:
15: // Obtain a descent direction �W
16: �W = �G
17:
18: // Perform backtracking line search
19: �B = X�W · · ·O(nnz(X)k)
20: �M̂ = diag(p)�BM · · ·O(mk2)
21: �� = d

>�Wk · · ·O(dk)
22: �L̂ = L�B · · ·O(nnz(L)k)

23: Val 1=
D
�B, M̂

E
+
D
B,�M̂

E
�2ā��

24: +2�w

⇣
hW,�W i+ �g

D
B,�L̂

E⌘
· · ·O(dk +mk)

25: Val 2 =
D
�B,�M̂

E

26: +�w

⇣
k�Wk2F + �g

D
�B,�L̂

E⌘
· · ·O(dk+mk)

27: c = hG,�W i · · ·O(dk)
28: for ↵ = 1,�,�2, . . . do
29: Bnew = B + ↵�B · · ·O(mk)
30: L+

new =
P

(i,j)2⌦+ `ij(Yij , b
new
i

>
hj) O(

��⌦+
��k)

31: if �L++L+
new+↵Val 1+↵2Val 2 < ↵�c then

32: W = W + ↵�W · · ·O(dk)
33: B = Bnew · · ·O(mk)
34: M̂ = M̂ + ↵�M̂ · · ·O(mk)
35: L̂ = L̂+ ↵�L̂ · · ·O(mk)
36: L+ = L+

new · · ·O(1)
37: Break the line-search for-loop



Supp-2 Experimental Details
Supp-2.1 Evaluation Criteria and Data Sources
We used Precision@k and nDCG@k as evaluation criteria.
For a predicted score vector ˆy 2 RL and the true label vector
y 2 {0, 1}L, Precision@k is defined as

p@k ⌘ 1

k

X

l2toprankk(ˆy)

yl,

and nDCG@k is defined as

DCG@k ⌘
X

l2toprankk(ˆy)

yl
log(l + 1)

,

nDCG@k ⌘ DCG@k
P

min(k,kyk0)

l=1

1

log(l+1)

.

For multi-label learning, the data sets are downloaded
from Mulan: A Java Library for Multi-Label Learning3 and
The Extreme Classification Repository.4 To avoid the 0/0
situation in the calculation of nDCG, data instances in the
test set without any active labels (i.e., kyk

0

= 0) are re-
moved. For recommender systems with graph information,
the data sources have been mentioned in the main text.

Supp-2.2 Parameter Selection
To select a suitable set of parameters, we hold out 1/5 of
the training instances for multi-label problems. Similarly,
we hold out 1/5 of the observed entries for graph structured
one-class MF. The chosen parameters are those that give the
highest validation performance on the hold out set. Since
the best parameter for different measures (p@1 to p@5) may
slightly vary, we used the one corresponding to the highest
p@5. However, if the best parameter for p@5 has a very bad
performance for other measures on the hold out set, we will
choose the second best parameter for p@5.

For our methods, we fix ā in (3) to �1 because of the
following reasons. First, for LR-wLR, we have

`+ij(Yij , ˜w
>
˜

xij) = `�ij(Yij , ˜w
>
˜

xij)

= log

⇣
1 + e�Yij ˜w

>
˜xij

⌘
,

where Yij = ±1. Therefore, for (i, j) 2 ⌦

�, its Yij = ā
should be �1. For other formulations such as LR-wSQ, we
have

`�(Yij , ˜w
>
˜

xij) = (ā� ˜

w

>
˜

xij)
2.

The logistic loss `+(Yij , ˜w>
˜

xij) intends to have

(i, j) 2 ⌦

+ if ˜

w

>
˜

xij � 0,

but for the squared loss `�(Yij , ˜w>
˜

xij), it intends to have

(i, j) 2 ⌦

� if ˜

w

>
˜

xij ⇡ 0.

Clearly, a conflict occurs when ˜

w

>
˜

xij > 0 but ⇡ 0. On
the other hand, for LEML (Yu et al. 2014), which is SQ-
SQ, we use ā = 0 in order be consistent with their ex-
periment setting. For our methods that include a weighted

3http://mulan.sourceforge.net/datasets-mlc.html
4https://manikvarma.github.io/downloads/XC/XMLRepository.html

loss (SQ-wSQ, LR-wSQ and LR-wLR), piqj in assump-
tion (3) is set to a constant ⇢. We perform a grid search for
log

2

(⇢) 2 {�9,�7,�5,�3,�1, 0}. For Subsampled ap-
proaches, we fix ⇢ = 1 and perform the grid search on the
ratio |⌦�|/|⌦+| 2 {0.25, 0.5, 1, 2}.

For regularization parameters �w and �h, we set
�w = �h and perform a grid search on log

2

(�w) 2
{�6,�4,�2, 0, 2, 4, 6}. For problems without graph infor-
mation, we set �g = 0. For problems with graph infor-
mation, �g is non-zero and is obtained by a grid search
on log

2

(�g�w) 2 {�6,�3, 0, 3, 6, 8, 10}. We consider the
same setting for LEML.

For the kernel Nyström method in the last experiment, we
use the same regularization and weight-loss parameters se-
lected earlier for the setting without the Nyström method.
For the Gaussian kernel K(x,y) = exp(��kx� yk2) ,
we check � 2

�
0.5/�2, 1/�2, 2/�2

 
, where �2 is the vari-

ance of all feature values in the entire training data set. We
also conduct a grid search on the number of columns using
D 2 {500, 1000}.

For all one-class MF formulations, we run 15 alternating
iterations in our validation process and obtain the validation
performance at each iteration. We then use the iteration in-
dex yielding the best validation performance as the number
of iterations to be run in training a model for predicting the
test set. Note that the held-out validation set is included so
we use the whole training set for generating the final model.

For the non-linear method SLEEC, since it includes 8
hyper-parameters, a grid search on this high dimensional
space is not easy. Therefore we first fix the number of clus-
ters to 1. Then the number of learners also becomes 1 be-
cause the use of several learners is due to the randomness in
clustering. Next we conduct a grid search on the two most
sensitive parameters: the k in kNN and the number of neigh-
bors considered during the singular value projection method
as suggested by the paper. For all other parameters we use
the suggested values given by the authors.

Supp-2.3 More Experimental Results
The results are shown in both tables and figures.
• In Figure Supp-1, we show the results of Full versus Sub-

sampled for multi-label learning in bar charts.
• In Figure Supp-2 and Figure Supp-3, we show the results

of various loss functions for three types of one-class MF
problems in bar charts.

• In Figure Supp-4, we show the results of the comparison
of non-linear multi-label classifiers in bar charts.

• In Table Supp-1, we show the detailed results of recom-
mender systems with and without graph information in
terms of precision@1 to precisions@5 and nDCG@1 to
nDCG@5.

• In Table Supp-2, we show the detailed results of the
comparison among non-linear multi-label classifiers in
terms of precision@1 to precisions@5 and nDCG@1 to
nDCG@5.

• In Table Supp-3, we show the detailed results of the multi-
label learning in terms of precision@1 to precisions@5
and nDCG@1 to nDCG@5.



(a) Prediction Performance (precision). (b) Prediction Performance (nDCG).

(c) Prediction Performance (precision). (d) Prediction Performance (nDCG).

(e) Prediction Performance (precision). (f) Prediction Performance (nDCG).

(g) Prediction Performance (precision). (h) Prediction Performance (nDCG).

(i) Prediction Performance (precision). (j) Prediction Performance (nDCG).

Figure Supp-1: Full v.s. Subsampled on multi-label learning with various loss functions. See Figure 1 for the legend informa-
tion.



(a) Standard one-class MF (b) Graph-structured one-class MF (c) Feature-aware one-class MF

(d) Standard one-class MF (e) Graph-structured one-class MF (f) Feature-aware one-class MF

(g) Standard one-class MF (h) Graph-structured one-class MF (i) Feature-aware one-class MF

(j) Standard one-class MF (k) Graph-structured one-class MF (l) Feature-aware one-class MF

(m) Standard one-class MF (n) Graph-structured one-class MF (o) Feature-aware one-class MF

Figure Supp-2: Comparison on various loss functions. Y-axis is the improvement of Precision@k over the SQ-SQ formulation
in percentage.



(a) Standard one-class MF (b) Graph-structured one-class MF (c) Feature-aware one-class MF

(d) Standard one-class MF (e) Graph-structured one-class MF (f) Feature-aware one-class MF

(g) Standard one-class MF (h) Graph-structured one-class MF (i) Feature-aware one-class MF

(j) Standard one-class MF (k) Graph-structured one-class MF (l) Feature-aware one-class MF

(m) Standard one-class MF (n) Graph-structured one-class MF (o) Feature-aware one-class MF

Figure Supp-3: Comparison on various loss functions. Y-axis is the improvement of nDCG@k over the SQ-SQ formulation in
percentage.



(a) Prediction Performance (precision). (b) Prediction Performance (nDCG).

(c) Prediction Performance (precision). (d) Prediction Performance (nDCG).

(e) Prediction Performance (precision). (f) Prediction Performance (nDCG).

(g) Prediction Performance (precision). (h) Prediction Performance (nDCG).

(i) Prediction Performance (precision). (j) Prediction Performance (nDCG).

Figure Supp-4: Comparison on non-linear multi-label classifiers.



Table Supp-1: Comparison on graph structured one-class MF. Loss1-Loss2 denotes the formulation with the Loss1 on entries
in ⌦

+ and Loss2 on entries in ⌦

�. wSQ/wLR denote the weighted square/logistic loss functions respectively. Note that the
SQ-SQ formulation for the graph structured one-class MF part is equivalent to the formulation considered in Rao et al. (2015).

(a) Precision@k

time p@1 p@2 p@3 p@4 p@5

ml100k

Standard one-class MF
SQ-SQ 1.2 26.93 22.20 20.00 18.47 16.95
SQ-wSQ 0.9 28.56 23.99 21.16 19.48 18.04
LR-wSQ 1.8 30.98 25.61 22.04 20.41 18.80

Graph structured one-class MF
SQ-SQ 1.3 28.55 24.62 22.04 20.26 19.05
SQ-wSQ 0.9 30.75 25.43 22.85 20.49 19.12
LR-wSQ 7.0 31.45 26.01 22.58 21.21 19.28

flixster

Standard one-class MF
SQ-SQ 23.7 14.87 12.41 10.96 10.06 9.35
SQ-wSQ 51.2 17.46 14.79 13.09 12.05 11.19
LR-wSQ 161.3 20.54 16.89 14.74 13.34 12.34

Graph structured one-class MF
SQ-SQ 27.4 14.66 12.37 10.97 10.06 9.35
SQ-wSQ 54.0 18.28 15.34 13.60 12.42 11.53
LR-wSQ 180.6 20.58 16.91 14.77 13.36 12.36

douban

Standard one-class MF
SQ-SQ 64.8 17.42 15.07 13.56 12.47 11.62
SQ-wSQ 100.3 18.13 15.97 14.47 13.35 12.48
LR-wSQ 514.3 19.71 17.59 16.12 15.03 14.16

Graph structured one-class MF
SQ-SQ 58.3 18.89 16.61 15.07 13.97 13.11
SQ-wSQ 75.0 19.27 17.12 15.58 14.47 13.56
LR-wSQ 571.4 20.23 18.02 16.57 15.44 14.53

(b) nDCG@k

n@1 n@2 n@3 n@4 n@5

Standard one-class MF
26.93 23.99 23.00 22.84 22.54
28.56 25.98 24.88 24.72 24.59
30.98 27.76 26.00 25.75 25.42

Graph structured one-class MF
28.55 26.54 25.57 25.28 25.38
30.75 27.59 26.73 25.99 25.82
31.45 28.12 26.50 26.55 26.04

Standard one-class MF
14.87 14.46 14.44 14.64 14.84
17.46 17.33 17.51 17.94 18.26
20.54 20.33 20.44 20.72 21.04

Graph structured one-class MF
14.66 14.35 14.38 14.59 14.78
18.28 18.16 18.43 18.80 19.15
20.58 20.36 20.50 20.77 21.08

Standard one-class MF
17.42 15.84 14.97 14.44 14.09
18.13 16.74 15.93 15.43 15.13
19.71 18.44 17.78 17.45 17.29

Graph structured one-class MF
18.89 17.41 16.60 16.14 15.89
19.27 17.93 17.14 16.71 16.45
20.23 18.89 18.24 17.88 17.70

Table Supp-2: Comparison of state-of-the-art approaches on multi-label learning.

(a) Precision@k

time p@1 p@2 p@3 p@4 p@5

bibtex

LR-wSQ 22 63.22 48.43 39.89 33.83 29.50
LR-wSQ-Nys 54 63.26 48.33 39.91 33.80 29.55
FastXML 17 63.62 47.89 39.22 33.39 29.01
SLEEC 249 65.29 48.97 39.63 33.24 28.76

delicious

LR-wSQ 23 67.47 64.24 61.85 59.25 56.73
LR-wSQ-Nys 94 69.64 66.74 64.11 61.35 58.84
FastXML 34 70.90 67.14 64.52 61.87 59.63
SLEEC 1,124 69.27 65.10 62.03 59.49 56.82

mediamill

LR-wSQ 61 87.77 80.96 70.08 61.48 55.15
LR-wSQ-Nys 144 88.72 82.08 71.85 63.70 57.08
FastXML 256 88.04 81.12 70.29 62.06 55.48
SLEEC 1,764 89.34 82.33 72.09 63.73 57.34

eurlex

LR-wSQ 404 78.43 71.21 65.82 60.67 55.64
LR-wSQ-Nys 1,134 79.20 71.75 66.15 60.75 55.80
FastXML 164 77.29 69.17 62.63 56.84 51.44
SLEEC 1,497 76.67 67.80 60.71 54.45 49.34

wiki10

LR-wSQ 449 85.07 77.50 71.33 66.14 61.85
LR-wSQ-Nys 666 84.72 77.20 71.05 66.22 61.86
FastXML 744 82.91 74.63 67.82 62.06 57.73
SLEEC 183 85.52 78.65 72.00 65.81 60.75

(b) nDCG@k

n@1 n@2 n@3 n@4 n@5

63.22 59.59 59.93 61.24 62.73
63.26 59.53 59.97 61.21 62.81
63.62 59.49 59.55 60.87 62.16
65.29 60.87 60.62 61.46 62.52
67.47 64.99 63.16 61.23 59.40
69.64 67.41 65.43 63.39 61.54
70.90 68.05 66.04 64.06 62.40
69.27 66.11 63.78 61.84 59.89
87.77 83.96 78.60 75.97 75.28
88.72 85.17 80.29 78.10 77.32
88.04 84.10 78.81 76.48 75.61
89.34 85.60 80.73 78.36 77.73
78.43 72.84 68.97 65.91 63.96
79.20 73.44 69.41 66.15 64.25
77.29 71.00 66.25 62.60 60.19
76.67 69.80 64.61 60.58 58.28
85.07 79.21 74.47 70.46 67.10
84.72 78.90 74.18 70.41 67.02
82.91 76.50 71.27 66.83 63.37
85.52 80.20 75.16 70.48 66.55



Table Supp-3: Comparison of various Full and Subsampled formulations on multi-label learning. Loss1-Loss2 denotes the
formulation with the Loss1 on entries in ⌦

+ and Loss2 on entries in ⌦

�. wSQ/wLR denote the weighted square/logistic loss
functions respectively. Note that the Full approach with SQ-SQ is equivalent to the LEML (Yu et al. 2014) formulation.

(a) Precision@k

time p@1 p@2 p@3 p@4 p@5

bibtex

the Subsampled approach
SQ-SQ 12 46.04 23.16 31.31 27.59 24.63
LR-LR 9 52.92 39.42 32.63 28.27 25.08

the Full approach
SQ-SQ 13 63.14 47.58 38.77 33.09 28.81
SQ-wSQ 12 63.30 48.35 39.78 33.74 29.37
LR-wSQ 22 63.22 48.43 39.89 33.83 29.50
LR-wLR 85 61.91 46.66 38.21 32.66 28.43

delicious

the Subsampled approach
SQ-SQ 8 53.80 52.42 50.46 49.13 47.41
LR-LR 19 63.89 60.86 58.44 55.95 53.43

the Full approach
SQ-SQ 3 66.88 63.44 61.09 58.84 56.51
SQ-wSQ 8 66.81 63.55 61.29 59.01 56.52
LR-wSQ 23 67.47 64.24 61.85 59.25 56.73
LR-wLR 446 67.91 65.04 62.27 59.81 57.27

mediamill

the Subsampled approach
SQ-SQ 83 83.20 79.21 69.62 61.66 55.50
LR-LR 93 87.62 80.72 69.87 61.37 55.08

the Full approach
SQ-SQ 8 87.70 81.05 69.89 61.23 54.72
SQ-wSQ 41 84.85 79.82 69.92 61.79 55.47
LR-wSQ 61 87.77 80.96 70.08 61.48 55.15
LR-wLR 437 87.78 81.17 70.38 61.85 55.33

eurlex

the Subsampled approach
SQ-SQ 93 29.75 30.94 30.23 29.75 29.04
LR-LR 166 44.08 43.09 39.83 37.39 34.58

the Full approach
SQ-SQ 335 78.43 70.18 63.67 57.80 52.21
SQ-wSQ 672 75.63 69.79 64.60 59.82 55.21
LR-wSQ 404 78.43 71.21 65.82 60.67 55.64

wiki10

the Subsampled approach
SQ-SQ 121 17.23 16.58 16.14 15.59 15.04
LR-LR 764 76.30 63.29 55.28 49.72 45.09

the Full approach
SQ-SQ 247 77.71 69.58 64.20 60.23 56.45
SQ-wSQ 872 78.69 69.97 64.39 60.35 56.59
LR-wSQ 449 85.07 77.50 71.33 66.14 61.85

(b) nDCG@k

n@1 n@2 n@3 n@4 n@5

the Subsampled approach
46.04 45.47 46.71 48.87 50.66
52.92 49.17 49.59 51.32 52.94

the Full approach
63.14 58.99 58.95 60.34 61.71
63.30 59.61 59.96 61.26 62.65
63.22 59.59 59.93 61.24 62.73
61.91 57.75 57.91 59.40 60.76

the Subsampled approach
53.80 52.73 51.28 50.26 49.02
63.89 61.56 59.71 57.84 55.99

the Full approach
66.88 64.24 62.42 60.72 59.03
66.81 64.31 62.57 60.86 59.07
67.47 64.99 63.16 61.23 59.40
67.91 65.74 63.68 61.85 59.99

the Subsampled approach
83.20 81.59 77.17 75.10 74.60
87.62 83.74 78.39 75.82 75.15

the Full approach
87.70 83.99 78.43 75.75 74.88
84.85 82.41 77.75 75.57 74.92
87.77 83.96 78.60 75.97 75.28
87.78 84.17 78.87 76.33 75.50

the Subsampled approach
29.75 30.67 30.38 30.47 30.92
44.08 43.32 41.17 39.90 38.99

the Full approach
78.43 72.04 67.30 63.63 61.12
75.63 71.11 67.45 64.66 63.02
78.43 72.84 68.97 65.91 63.96

the Subsampled approach
17.23 16.73 16.38 15.98 15.56
76.30 66.23 59.91 55.40 51.62

the Full approach
77.71 71.42 67.20 64.04 61.07
78.69 71.94 67.55 64.31 61.34
85.07 79.21 74.47 70.46 67.10


