Learning shallow quantum circuits

Hsin-Yuan Huang (Robert)

Collaborators: Yunchao Liu, Michael Broughton, Isaac Kim,

Anurag Anshu, Zeph Landau, Jarrod R McClean

Shallow quantum circuits are quantum circuits with constant depth.
Despite their simplicity, they are surprisingly powerful.

• Example 1: Shallow quantum circuits are unconditionally more powerful than shallow classical circuits.

• Example 1: Shallow quantum circuits are unconditionally more powerful than shallow classical circuits.

• Example 1: Shallow quantum circuits are unconditionally more powerful than shallow classical circuits.

• Example 1: Shallow quantum circuits are unconditionally more powerful than shallow classical circuits.

Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits. STOC 2019

• Example 2: Shallow quantum circuits are expon. more powerful than shallow classical circuits with unbounded fan-in AND gates.

Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits. STOC 2019

• Example 2: Shallow quantum circuits are expon. more powerful than shallow classical circuits with unbounded fan-in AND gates.

(for sampling tasks) assuming PH does not collapse.

• Example 3: Shallow quantum circuits are classically hard to simulate

*Assuming PH does not collapse

Learning shallow quantum circuits

• The power of QNC^0 raises the hope that they may be used as machine learning (ML) models with quantum advantages.

Learning shallow quantum circuits

- Extensive prior works have studied the problem of learning/training parameterized shallow quantum circuits.
- a.k.a. shallow quantum neural networks (QNNs).

Learning shallow quantum circuits

quantum circuits, no efficient learning algorithm is known.

• Unfortunately, despite the significant interest in learning shallow

Overview

- Challenges in learning shallow quantum circuits
- Provably efficient learning algorithm
- Potential applications

Overview

• Challenges in learning shallow quantum circuits

Provably efficient learning algorithm

Potential applications

• Shallow classical circuits are easy to learn: 1. NC^0 can be learned in poly. time 2. AC⁰ can be learned in quasi-poly. time

- But shallow quantum circuit can generate classically-hard highly-nonlocal correlations.
- Hence, known techniques do not apply.

Shallow quantum circuits do not have barren plateau. But they are swamped with **exponentially many bad local minima**.

(a)

Fig. from "Quantum variational algorithms are swamped with traps". Nat. Comm. 2022

(b)

As a result, gradient descent and other optimization methods get stuck in a bad local minimum and fail.

(a)

(b)

Fig. from "Quantum variational algorithms are swamped with traps". Nat. Comm. 2022

Question

Are shallow quantum circuits computationally hard to learn?

Overview

• Challenges in learning shallow quantum circuits

Provably efficient learning algorithm

Potential applications

Overview

- Challenges in learning shallow quantum circuits
- Provably efficient learning algorithm
- Potential applications

Learning shallow quantum circuits

- Consider an unknown n-qubit shallow quantum circuit U.
- How to learn U efficiently?

Learning shallow quantum circuits

- Consider an unknown *n*-qubit shallow quantum circuit U.
- How to learn U efficiently?

Standard strategy

Learning

shallow quantum circuits

- Consider an unknown *n*-qubit shallow quantum circuit U.
- How to learn U efficiently?

Standard strategy

- 1. Guess a param. circuit $\hat{U}(\theta)$.
- Check the loss function.
- 3. Update θ , repeat 2.

Learning shallow quantum circuits

- Consider an unknown n-qubit shallow quantum circuit U.
- Use an unconventional parameterization of U.

Proposed strategy

- Parameterize U by its local inversions.
- 2. Learn/train local inversions.

 \approx

• We say V_i is the local inversion of U on qubit i if

 \gtrsim

• We say V_i is the local inversion of U on qubit i if

 \approx

• We say V_i is the local inversion of U on qubit i if

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- Does the local inversions uniquely parameterize U?

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We can sew local inversions together to form U.

Initialize

I/2 I/2 I/2 I/2 I/2 I/2 I/2 I/2

$$|\psi\rangle$$

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We can sew local inversions together to form U.

Imagine

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We can sew local inversions together to form U.

Invert

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We can sew local inversions together to form U.

Uncover

2n qubits

Dispose

2n qubits

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We can sew local inversions together to form U.

Dispose

2n-1 qubits

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We can sew local inversions together to form U.

Rewire

2n-1 qubits

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We can sew local inversions together to form U.

Un-invert

2n-1 qubits

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We can sew local inversions together to form U.

2n-1 qubits

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We can sew local inversions together to form U.

2n-1 qubits

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We can sew local inversions together to form U.

2n-2 qubits

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We can sew local inversions together to form U.

2n-3 qubits

- Given local inversions V_1, \ldots, V_n of U on each qubit.
- We have sewn together to form the n-qubit unitary U.

Learning shallow quantum circuits

Theorem 1

Any n-qubit shallow quantum circuit U can be

• The quantum circuit can be of any connectivity.

learned to ϵ diamond distance in poly($n, 1/\epsilon$) time.

Learning shallow quantum circuits

Theorem 1

Any *n*-qubit shallow quantum circuit U can be

learned to ϵ diamond distance in poly($n, 1/\epsilon$) time.

- The algorithm only uses a classical dataset describing
 - product state inputs to U and Pauli measurement outcomes.

Learning outputs of shallow quantum circuits

Theorem 2

Pauli measurement outcomes on the state ρ .

- Any state ρ prepared by *n*-qubit shallow 2D circuits
- can be learned to ϵ trace distance in poly $(n, 1/\epsilon)$ time.

• The algorithm only uses a classical dataset describing

Overview

- Challenges in learning shallow quantum circuits
- Provably efficient learning algorithm
- Potential applications

Overview

- Challenges in learning shallow quantum circuits
- Provably efficient learning algorithm
- Potential applications

• What can we do with an efficient algorithm for learning shallow quantum circuits?

• What can we do with an efficient algorithm for learning shallow quantum circuits?

Example 1

Learning quantum dynamics

Any unitary generated by short-time dynamics is learnable

 $X_i \to O_{X,i}$ $Y_i \to O_{Y,i}$

 $Z_i \rightarrow O_{Z,i}$

• What can we do with an efficient algorithm for learning shallow quantum circuits?

Example 1

Learning quantum dynamics

Any unitary generated by short-time dynamics is learnable

 $X_i \to O_{X,i}$ $Y_i \to O_{Y,i}$

 $Z_i \rightarrow O_{Z,i}$

_

Given an *n*-qubit circuit. Find a shallow circuit to implement it.

Example 2

Compressing circuits

 $U = U_i$ *i*:*m*←1

• What can we do with an efficient algorithm for learning shallow quantum circuits?

Example 1

Learning quantum dynamics

Any unitary generated by short-time dynamics is learnable

 $X_i \to O_{X,i}$ $Y_i \to O_{Y,i}$

 $Z_i \rightarrow O_{Z,i}$

_

Given an *n*-qubit circuit. Find a shallow circuit to implement it.

Example 2

Compressing circuits

 $U = \prod_{i:m \leftarrow 1} U_i$

Hamiltonian simulations, distribution learning

Conclusion

- Shallow quantum circuits are efficiently learnable and are classically hard to simulate.
- What about learning certain deep quantum circuits? Or learning high-dimensional states?

