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Shallow quantum circuits

® Shallow quantum circuits are quantum circuits with constant depth.

® Despite their simplicity, they are surprisingly powerful.
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Shallow quantum circuits

® Example 1: Shallow quantum circuits are
than shallow classical circuits.

Example 1

QONC" versus NC"

Quantum advantage with shallow circuits. Science 2018
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® Example 1: Shallow quantum circuits are
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Shallow quantum circuits

® Example 2: Shallow quantum circuits are
than shallow classical circuits with unbounded fan-in AND gates.
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QONC" versus NC QONC" versus AC’
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Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits. STOC 2019



Shallow quantum circuits

® Example 2: Shallow quantum circuits are
than shallow classical circuits with unbounded fan-in AND gates.

Example 1 Example 2
QONC" versus NC" ONC" versus AC" Shallow
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Shallow quantum circuits

® Example 3: Shallow quantum circuits are to simulate
(for sampling tasks) assuming PH does not collapse.

Example 1 Example 2 ExXample 3.,
QNC" versus NC' QNC" versus AC" QNC” versus BPP

7~ N\

*Assuming PH does not collapse



Learning
shallow quantum circuits

® The power of QNC raises the hope that they may be used as
machine learning (ML) models with quantum advantages.
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Learning
shallow quantum circuits

® Extensive prior works have studied the problem of learning/training
parameterized shallow quantum circuits.

® a.k.a. shallow guantum neural networks (QNNs).




Learning
shallow quantum circuits

® Unfortunately, despite the significant interest in learning shallow
guantum circuits, no efficient learning algorithm is known.
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® Provably efficient learning algorithm

® Potential applications
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Challenge 1

® Shallow classical circuits are easy to learn:

1. NC" can be learned in poly. time

2. AC” can be learned in quasi-poly. time
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Challenge 1

® But shallow quantum circuit can generate
classically-hard highly-nonlocal correlations.

® Hence, known techniques do not apply.
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Challenge 2

Shallow quantum circuits do not have barren plateau.
But they are swamped with exponentially many bad local minima.
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Fig. from “Quantum variational algorithms are swamped with traps”. Nat. Comm. 2022



Challenge 2

As a result, gradient descent and other optimization methods
get stuck in a bad local minimum and fail.
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Question

Are shallow quantum circuits computationally hard to learn?
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Standard strategy

1. Guess a param. circuit lA](H).

2. Check the loss function.

3. Update 0, repeat 2.




Learning
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® Consider an unknown n-qubit shallow quantum circuit U.

® How to learn U efficiently?

Standard strate
@ 9y
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A search space has
expon. many traps. 2. Check the loss function.

1. Guess a param. circuit lA](H).

3. Update 0, repeat 2.
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® Consider an unknown n-qubit shallow quantum circuit U.

® Use an unconventional parameterization of U.

Proposed strategy

1. Parameterize U by its local
Inversions.

2. Learn/train local inversions.
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® We say V. is the local inversion of U on qubit i if
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Local inversions

® Given local inversions V,, ...,V of U on each qubit.

® Does the local inversions uniquely parameterize U?

% )
'Y
qubit i E




Sewing local inversions

® Given local inversions V,, ...,V of U on each qubit.

® \We can sew local inversions together to form U.

Initialize
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Sewing local inversions

® Given local inversions V,, ...,V of U on each qubit.

® \We can sew local inversions together to form U.
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Sewing local inversions

® Given local inversions V,, ...,V of U on each qubit.

® \We can sew local inversions together to form U.

Invert
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Sewing local inversions

® Given local inversions V,, ...,V of U on each qubit.

® \We can sew local inversions together to form U.

Uncover
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Sewing local inversions

® Given local inversions V,, ...,V of U on each qubit.

® \We can sew local inversions together to form U.
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Sewing local inversions

® Given local inversions V,, ...,V of U on each qubit.

® \We can sew local inversions together to form U.

Rewire
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Sewing local inversions

® Given local inversions V,, ...,V of U on each qubit.
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Sewing local inversions

® Given local inversions V,, ..., V, of U on each qubit.

® \We can sew local inversions together to form U.
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Sewing local inversions

® Given local inversions V,, ..., V, of U on each qubit.

® \We can sew local inversions together to form U.

1. Invert

2. Uncover

3. Dispose [/
4. Rewire
. l [/2 1/2 172 172 1/2 N
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Sewing local inversions

® Given local inversions V,, ..., V, of U on each qubit.

® \We can sew local inversions together to form U.
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Sewing local inversions

® Given local inversions V,, ..., V, of U on each qubit.

® \We have sewn together to form the n-qubit unitary U.

1. Invert
2. Uncover

3. Dispose
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Learning
shallow quantum circuits

B oon

Any n-qubit shallow quantum circuit U can be
learned to € diamond distance in poly(n,1/¢€) time.
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® The quantum circuit can be of any connectivity.




Learning
shallow quantum circuits

g .

Any n-qubit shallow quantum circuit U can be

learned to € diamond distance in poly(n,1/¢€) time.

\_ /

® The algorithm only uses a classical dataset describing

product state inputs to U and Pauli measurement outcomes. --
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Learning outputs of
shallow quantum circuits

B oon

Any state p prepared by n-qubit shallow 2D circuits
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can be learned to € trace distance in poly(n,1/¢€) time.

/

® The algorithm only uses a classical dataset describing

Pauli measurement outcomes on the state p.
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® \What can we do with an efficient algorithm
for learning shallow quantum circuits?

Example 1

Learning quantum dynamics

Any unitary generated by
short-time dynamics is learnable
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Applications

® \What can we do with an efficient algorithm
for learning shallow quantum circuits?

Example 1 Example 2

Learning quantum dynamics Compressing circuits

Any unitary generated by Given an n-qubit circuit. Find a
short-time dynamics is learnable shallow circuit to implement it.
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Applications

® \What can we do with an efficient algorithm
for learning shallow quantum circuits?

Example 1 Example 2

Learning quantum dynamics Compressing circuits

Any unitary generated by Given an n-qubit circuit. Find a
short-time dynamics is learnable shallow circuit to implement it.

Hamiltonian simulations,
distribution learning
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Conclusion

® Shallow quantum circuits are efficiently learnable and are
classically hard to simulate.

® \What about learning certain deep quantum circuits? Or
learning high-dimensional states?
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