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• Shallow quantum circuits are quantum circuits with constant depth. 

• Despite their simplicity, they are surprisingly powerful.
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Quantum advantage with shallow circuits. Science 2018

• Example 1: Shallow quantum circuits are unconditionally more 
powerful than shallow classical circuits.
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• Example 2: Shallow quantum circuits are expon. more powerful 
than shallow classical circuits with unbounded fan-in AND gates.
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Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits. STOC 2019
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• Example 2: Shallow quantum circuits are expon. more powerful 
than shallow classical circuits with unbounded fan-in AND gates.
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• Example 3: Shallow quantum circuits are classically hard to simulate 
(for sampling tasks) assuming PH does not collapse.
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• The power of  raises the hope that they may be used as 
machine learning (ML) models with quantum advantages.
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• Extensive prior works have studied the problem of learning/training 
parameterized shallow quantum circuits. 

• a.k.a. shallow quantum neural networks (QNNs).
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• Unfortunately, despite the significant interest in learning shallow 
quantum circuits, no efficient learning algorithm is known.
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• Shallow classical circuits are easy to learn: 

1.  can be learned in poly. time 

2.  can be learned in quasi-poly. time
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• But shallow quantum circuit can generate 
classically-hard highly-nonlocal correlations. 

• Hence, known techniques do not apply.
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Shallow quantum circuits do not have barren plateau. 
But they are swamped with exponentially many bad local minima.

Challenge 2

Fig. from “Quantum variational algorithms are swamped with traps”. Nat. Comm. 2022



As a result, gradient descent and other optimization methods 
get stuck in a bad local minimum and fail.

Challenge 2

Fig. from “Quantum variational algorithms are swamped with traps”. Nat. Comm. 2022



Are shallow quantum circuits computationally hard to learn?

Question
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1. Guess a param. circuit . 

2. Check the loss function. 

3. Update , repeat 2.

Û(θ)

θ

Standard strategy

• Consider an unknown -qubit shallow quantum circuit . 

• How to learn  efficiently?

n U

U

The expon. large 
search space has 

expon. many traps.
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Learning 
shallow quantum circuits

1. Parameterize  by its local 
inversions. 

2. Learn/train local inversions.

U

Proposed strategy

• Consider an unknown -qubit shallow quantum circuit . 

• Use an unconventional parameterization of .
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Local inversions

?UVi
ℰUVi

≠i ≈

qubit i

• Given local inversions  of  on each qubit. 

• Does the local inversions uniquely parameterize ?

V1, …, Vn U

U



Sewing local inversions

|ψ⟩

I/2 I/2 I/2 I/2 I/2 I/2 I/2
 qubits2n

Initialize

• Given local inversions  of  on each qubit. 

• We can sew local inversions together to form .

V1, …, Vn U

U



Sewing local inversions

U

I/2 I/2 I/2 I/2 I/2 I/2 I/2

|ψ⟩
 qubits2n

Imagine

• Given local inversions  of  on each qubit. 

• We can sew local inversions together to form .

V1, …, Vn U

U



Sewing local inversions

I/2 I/2 I/2 I/2 I/2 I/2 I/2

|ψ⟩

U

V1

 qubits2n

Invert

• Given local inversions  of  on each qubit. 

• We can sew local inversions together to form .

V1, …, Vn U

U



Sewing local inversions

I/2 I/2 I/2 I/2 I/2 I/2 I/2

|ψ⟩

ℰUV1
≠1

 qubits2n

Uncover

• Given local inversions  of  on each qubit. 

• We can sew local inversions together to form .

V1, …, Vn U

U



Sewing local inversions

I/2 I/2 I/2 I/2 I/2 I/2 I/2

|ψ⟩
 qubits2n

Dispose

ℰUV1
≠1



Sewing local inversions

I/2 I/2 I/2 I/2 I/2 I/2

|ψ⟩
 qubits2n − 1

Dispose

ℰUV1
≠1

• Given local inversions  of  on each qubit. 

• We can sew local inversions together to form .

V1, …, Vn U

U



Sewing local inversions

I/2 I/2 I/2 I/2 I/2 I/2

|ψ⟩

Rewire

 qubits2n − 1

ℰUV1
≠1

• Given local inversions  of  on each qubit. 

• We can sew local inversions together to form .

V1, …, Vn U

U



Sewing local inversions

I/2 I/2 I/2 I/2 I/2 I/2

|ψ⟩

Un-invert
V†

1

 qubits2n − 1

ℰUV1
≠1

• Given local inversions  of  on each qubit. 

• We can sew local inversions together to form .

V1, …, Vn U

U



Sewing local inversions

I/2 I/2 I/2 I/2 I/2 I/2

|ψ⟩

U

Heal

 qubits2n − 1

• Given local inversions  of  on each qubit. 

• We can sew local inversions together to form .

V1, …, Vn U

U



I/2

Sewing local inversions

I/2 I/2 I/2 I/2

|ψ⟩

3. Dispose

2. Uncover

1. Invert

5. Un-invert

6. Heal

4. Rewire
I/2

 qubits2n − 1

U

• Given local inversions  of  on each qubit. 

• We can sew local inversions together to form .

V1, …, Vn U

U



Sewing local inversions

I/2 I/2 I/2 I/2

|ψ⟩

I/2
 qubits2n − 2

U3. Dispose

2. Uncover

1. Invert

5. Un-invert

6. Heal

4. Rewire

• Given local inversions  of  on each qubit. 

• We can sew local inversions together to form .

V1, …, Vn U

U



Sewing local inversions

I/2 I/2 I/2 I/2

|ψ⟩
 qubits2n − 3

U3. Dispose

2. Uncover

1. Invert

5. Un-invert

6. Heal

4. Rewire
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Sewing local inversions

|ψ⟩
 qubitsn

U

• Given local inversions  of  on each qubit. 

• We have sewn together to form the -qubit unitary .
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• The quantum circuit can be of any connectivity.

Theorem 1

Learning 
shallow quantum circuits

Any -qubit shallow quantum circuit  can be 
learned to  diamond distance in  time.

n U
ϵ poly(n,1/ϵ)



Theorem 1

Learning 
shallow quantum circuits

• The algorithm only uses a classical dataset describing 
product state inputs to  and Pauli measurement outcomes.U

Any -qubit shallow quantum circuit  can be 
learned to  diamond distance in  time.

n U
ϵ poly(n,1/ϵ)



Any state  prepared by -qubit shallow 2D circuits 
can be learned to  trace distance in  time.

ρ n
ϵ poly(n,1/ϵ)

Theorem 2

Learning outputs of 
shallow quantum circuits

• The algorithm only uses a classical dataset describing 
Pauli measurement outcomes on the state .ρ
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Example 1
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Ui

•What can we do with an efficient algorithm 
for learning shallow quantum circuits?

Any unitary generated by 
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• Shallow quantum circuits are efficiently learnable and are 
classically hard to simulate. 

• What about learning certain deep quantum circuits? Or 
learning high-dimensional states?

Conclusion
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