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We study our ability to learn physical operations in quantum systems where all operations,
from state preparation, dynamics, to measurement, are a priori unknown. We prove that
without any prior knowledge, if one can explore the full quantum state space by composing
the operations, then every operation could be learned up to an arbitrarily small error. When
one cannot explore the full space but the operations are approximately known, we present
an efficient algorithm for learning all operations up to a single unlearnable parameter cor-
responding to the fidelity of the initial state assuming gate-independent noise on Clifford
gates. Our algorithm for learning the Clifford gate noise uses a number of experiments linear
in the number of parameters, which is quadratically fewer than the best known randomized
benchmarking protocol. When these assumptions are not met, the true description of the
noise can be fundamentally unlearnable, e.g., we prove that no benchmarking protocol can
learn the Pauli noise on Clifford+T gates if the Pauli noise depends on the gates. Even when
the noise cannot be learned, we prove that a large quantum advantage can be achieved in a
recent learning task performed on the Sycamore quantum processor.

Understanding what we can learn from experiments is central to many scientific fields. By conduct-
ing experiments we obtain information about the physical world. This information can be organized
into knowledge allowing us to predict how the world would behave under different circumstances and to
design complex systems with desired functionalities. To develop quantum technology, understanding
what we can learn from quantum experiments is crucial.

In this work, we build on computational learning theory [19, 32, 37] to develop a rigorous theory for
reasoning about what can and cannot be learned. We represent scientists and their classical algorithms
abstractly as classical agents that conduct experiments by specifying actions that control a quantum
mechanical system. Actions include specifying which initial states are prepared, which CPTP maps
are performed, and which POVM measurements are executed at the end of an experiment. Classical
agents do not have perfect knowledge about how these actions affect the quantum world, e.g., what
state is prepared, or what quantum processes and measurements are actually implemented. But
classical agents can improve their understanding of the physical world through experiments. We refer
to the mapping from each action to the corresponding physical operation as a world model 𝒲. The
central question we would like to answer is: What can a classical agent learn about the true world
model 𝒲* describing the underlying physical reality?

To answer this question, we make a distinction between two different viewpoints for assessing how
well the classical agent learns. The first viewpoint judges whether the classical agent accurately learns
the intrinsic descriptions of the physical operations. This is the viewpoint commonly considered in
quantum tomography [2, 3, 12, 21–23, 27, 29, 38]. For example, given a quantum computer, we
might want the classical agent to characterize the noise afflicting the state preparations, maps, or
measurements acting on various qubits. Knowledge about the intrinsic descriptions of the physical
operations is crucial for calibrating, controlling, and improving a complex quantum many-body system
[8, 50, 51]. If, for example, the classical agent finds the measurements to be particularly noisy, we
should focus on improving our measurement procedure.

The second viewpoint examines whether the classical agent can predict the extrinsic behavior of
the quantum system. In particular, given an experiment, we ask the classical agent to predict the
experimental outcomes. The classical agent does not need to learn the actual descriptions of the
physical operations and is free to use any model as long as the prediction is accurate. The second
viewpoint is relevant when we want to control the quantum system to achieve specific tasks, such as
mitigating errors in a particular computation [14, 31, 44, 46]. Because the true physical descriptions are
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Figure 1: Illustration of a classical agent that can learn from quantum experiments. Classical agent specify
an instruction consisting of the actions 𝑥, 𝑦, 𝑧 for the experiment. The quantum system runs the experiment
using a state 𝜌𝑥, a quantum process ℰ𝑦, and a POVM measurementℳ𝑧 to produce an experimental outcome.
The classical agent does not have prior knowledge on what 𝜌𝑥, ℰ𝑦,ℳ𝑧 are. The goal of the classical agent is to
either learn 𝜌𝑥, ℰ𝑦,ℳ𝑧 (learning intrinsic descriptions) or predict the distribution of the experimental outcome
(predicting extrinsic behaviors).

not learned, a model that can predict extrinsic behavior might not provide useful guidance regarding
how to improve the quantum device. While intrinsic descriptions are more informative than a model
for predicting extrinsic behavior, intrinsic descriptions are also much more challenging to learn.

In this work, we will provide fundamental results for understanding what one could learn from noisy
quantum experiments. We will present case studies that illustrate the practical implications of the
foundations established in this work. In a subsequent work, we will present a versatile mathematical
framework for developing rigorous neural network algorithms capable of learning a wide range of noise
models in quantum many-body systems.

I. Foundations

To elucidate the basic features of learning intrinsic descriptions and predicting extrinsic behaviors,
we prove a series of fundamental results regarding what the classical agent can learn and how efficiently
the classical agent can learn it. We begin by establishing the formalism. Then, we present the
fundamental results that elucidate the two viewpoints: learning intrinsic descriptions and predicting
extrinsic behaviors.

A. A formalism for learning from quantum experiments

We consider three sets of actions that the classical agent could play: 𝒳 is the set of actions for
preparing different kind of states, 𝒴 consists of actions for implementing certain physical evolutions,
and 𝒵 is a set of possible POVM measurements. A world model 𝒲 is a mapping from the actions
to the actual physical operations. For example, each action 𝑦 ∈ 𝒴 corresponds to a quantum channel
ℰ𝑦 that will be applied to the quantum system when the classical agent performs the action 𝑦. We
represent the world model by the collection of all the physical operations associated to every action,

𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵) , (1)

where 𝜌𝑥 is a quantum state, ℰ𝑦 is a quantum channel, and ℳ𝑧 is a POVM measurement. In Ap-
pendix A, we provide formal definitions of world models and the relations between world models. Due
to the intrinsic degeneracy in the mathematical formulation of quantum mechanics, two world models
related by a unitary or anti-unitary transformation describe the same physical reality.

The classical agent conduct experiments by controlling the quantum system with the given set of
actions. Each experiment 𝐸 begins with an action 𝑥 ∈ 𝒳 that prepares the state 𝜌𝑥, followed by
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a sequence of actions 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴 that evolves the state 𝜌𝑥 to ℰ𝑦𝐿(. . . ℰ𝑦2(ℰ𝑦1(𝜌𝑥)) . . .), and the
experiment ends with an action 𝑧 ∈ 𝒵 that produces a measurement outcome after performing the
POVM ℳ𝑧 on ℰ𝑦𝐿(. . . ℰ𝑦2(ℰ𝑦1(𝜌𝑥)) . . .). Suppose the true world model is 𝒲true, and suppose the
classical agent has a class of candidate models 𝒬 = {𝒲} for the true world model𝒲true ∈ 𝒬 encoding
his/her prior knowledge. The goal of the classical agent is to obtain knowledge (learn) about the true
world model 𝒲true in the model class 𝒬 by conducting experiments. The set of candidate models 𝒬
could be uncountably large, which is common in actual experimental setup as the possible noise process
forms an uncountably infinite set. The set of models 𝒬 will be referred to as the model class, following
the nomenclature in classical learning theory [37].

B. Learning intrinsic descriptions of the world model

A common viewpoint for judging the success of the classical learning agent is to see if he/she could
identify the physical description of the true world model 𝒲true ∈ 𝒬 (up to a unitary or anti-unitary
transformation). In particular, given any error 𝜖 > 0, we check whether the classical agent can learn to
describe the states 𝜌𝑥, the maps ℰ𝑦, and the POVMsℳ𝑧 in𝒲true to error at most 𝜖. Formal definition
of learnability is given in Appendix C. Such a viewpoint is often taken in the literature of quantum
tomography to provide rigorous performance guarantee. In quantum state/process tomography, we
assume that certain actions are perfectly known and we would like to learn the descriptions of the
states or the CPTP maps to any error. Here, all actions may be unknown, but we would still like to
learn the true physical descriptions to arbitrarily small error.

Learning the intrinsic physical description is challenging because the classical agent only observe
the behavior of the world model under the given set of actions. If the actions are limited, then he/she
is unable to learn the intrinsic physical description of 𝒲true. For example, a classical agent cannot
distinguish between the following two distinct physical realities in a single-qubit system,

𝒲𝐴 : 𝜌𝐴0 = 𝐼/2, ℰ𝐴𝐻(𝜌) = 𝐻𝜌𝐻†, ℰ𝐴𝑇 (𝜌) = 𝑇𝜌𝑇 †, ℳ𝐴
0 = {|0⟩⟨0|, |1⟩⟨1|}, (2)

𝒲𝐵 : 𝜌𝐵0 = 𝐼/2, ℰ𝐵𝐻 (𝜌) = 𝐼/2, ℰ𝐵𝑇 (𝜌) = 𝐼/2, ℳ𝐵
0 = {|0⟩⟨0|, |1⟩⟨1|}, (3)

with actions 𝒳 = {0},𝒴 = {𝐻,𝑇},𝒵 = {0}. In both world A and B, the experimental outcome is
always a uniform distribution over the two outcomes 0, 1. Hence, given any possibly uncountably large
model class 𝒬 that contains 𝒲𝐴 and 𝒲𝐵, the classical agent would not be able to learn all actions
to arbitrarily small error. This stems from the fact that the actions are too limited to tell the two
physical realities apart. The classical agent cannot distinguish the two physical realities because the
input state is “informationally incomplete” in the above example. This is like the situation where one
hopes to perform quantum state tomography with computational basis measurements alone — it is
impossible because the measurements are not informationally complete.

One may wonder whether it is possible to learn the intrinsic descriptions of all actions if the classical
agent do not have any prior knowledge about each action. Our first result shows that even without
knowing what each action is, a classical agent can learn the intrinsic descriptions of all actions when
the actions enable the agent to explore the quantum state space completely, and there is at least one
action that implements a nontrivial POVM that depends on the state being measured.

Definition 1. A world model 𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵) is universal if (i) there is 𝑥 ∈ 𝒳 ,
such that the state 𝜌𝑥 is pure; (ii) there are 𝑦1, . . . , 𝑦𝑘 ∈ 𝒴, such that the actions maps ℰ𝑦1 , . . . ℰ𝑦𝑘
constitute a universal set of unitary transformations; (iii) there is 𝑧 ∈ 𝒵, such that the POVM ℳ𝑧

has at least one POVM element not proportional to identity.

Given an arbitrary world model 𝒲 that satisfies Definition 1, the classical agent would not know
the action 𝑥 that prepares a pure state, the actions 𝑦1, . . . , 𝑦𝑘 that implements the universal set of
unitaries, nor the action 𝑧 that implements the nontrivial POVM. Furthermore, the classical agent
has no knowledge about what the physical operations 𝜌𝑥, ℰ𝑦1 , . . . ℰ𝑦𝑘 ,ℳ𝑧 are. However, it is possible
to learn all actions in 𝒲 as given by the following theorem.
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Theorem 2 (Learning intrinsic description). Consider a (uncountably large) set 𝒬* of candidate
world models that satisfy Definition 1. If the true world model 𝒲true ∈ 𝒬*, then the classical agent
can learn the description of every action in 𝒲true to arbitrarily small error (up to one global unitary
or anti-unitary transformation).

Proof idea. Here, we present the general idea of the proof. The detail is given in Appendix D. First,
we design a procedure for testing whether a composed CPTP map ℰ𝑦𝑘 ∘ . . . ∘ ℰ𝑦1 is an identity. Then,
we use the fact that unitaries are the only reversible CPTP maps and the identity testing procedure
to create a protocol for testing whether a CPTP map ℰ𝑦 is a unitary. The unitary test allows the
learning agent to identify every action that implements a unitary transformation.

Next, we show that randomly composing the identified unitaries forms an approximate Haar random
unitary. This is proven using a contraction theorem for random walks on compact semi-simple Lie
groups [47]. This result holds for any universal set of unitaries without the need to include inverses
or have algebraic entries, but the theorem is weaker than the spectral gap theorem in [5]. Building
on Corollary 7 in [47], we can show that the expectation value of any Lipschitz continuous function
on a randomly composed unitaries is approximately equal to that of a Haar random unitary. Hence,
although the learning agent doesn’t know what each unitary is, the learning agent can still sample
approximate Haar-random unitaries. In fact, it will suffice to sample approximately from a unitary
two-design. Up to this point, the learning agent has not learned the description for any of the actions.

We then prove the following: given a procedure that samples approximately from a unitary two-
design and the availability of an unknown POVM with at least one POVM element not proportional
to identity, we can create a procedure that estimates the overlap tr(𝜌1𝜌2) for any two states 𝜌1, 𝜌2.
This procedure makes use of the two-design property of the random unitary ensemble.

Applying this overlap estimation procedure, the learning agent can determine for which value of
𝑥 the state 𝜌𝑥 is pure, and then reach other pure states by applying unitary circuits to 𝜌𝑥. Through
further applications of the overlap estimation procedure, the learning agent can find a special set
of states {|𝜓𝑘⟩} with a particular geometry. Specifically, the special set of states corresponds to an
orthonormal basis of pure states |𝑒1⟩ , . . . , |𝑒𝑑⟩, superpositions of pairs of these basis states 1√

2
(|𝑒𝑖⟩ +

|𝑒𝑗⟩), 1√
2
(|𝑒𝑖⟩ + i |𝑒𝑗⟩) with a real or imaginary relative phase, and also superpositions of three basis

states 1√
3
(|𝑒1⟩+ |𝑒𝑖⟩+ |𝑒𝑗⟩), 1√

3
(|𝑒1⟩+ i |𝑒2⟩+ i |𝑒𝑗⟩), 1√

3
(|𝑒1⟩+ |𝑒𝑖⟩+ i |𝑒𝑗⟩). The superposition of three

bases is required to transfer information about the relative phases across different pairs of bases. The
only ambiguity in this procedure is that all experiments would yield the same results if each state |𝜓𝑘⟩
were replaced by 𝑈 |𝜓𝑘⟩ where 𝑈 is a fixed unitary transformation, and/or if (𝑖) were replaced by (−𝑖)
in the superpositions of basis states (i.e., if a fixed antiunitary transformation were applied to each
state |𝜓𝑘⟩).

Given the special set of states {|𝜓𝑘⟩} and the procedure for estimating state overlaps, the classical
agent can perform a version of quantum state tomography to learn the physical representation of 𝜌𝑥
for all 𝑥 ∈ 𝒳 . Similarly, the classical agent can learn the CPTP map ℰ𝑦 for all 𝑦 ∈ 𝒴 by performing
quantum state tomography on the states ℰ𝑦(|𝜓𝑘⟩⟨𝜓𝑘|) for all special states |𝜓𝑘⟩. The classical agent
can also learn the POVM ℳ𝑧 for all 𝑧 ∈ 𝒵 from the outcome probability distribution when ℳ𝑧 is
performed on the special states {|𝜓𝑘⟩}. Hence, the classical agent has learned all the actions.

When we cannot explore the quantum state space completely, it may be impossible to learn the
intrinsic description to arbitrarily small error even with an infinite number of experiments. We
present basic results that relates the learnability between different model classes in Appendix E.
We build on these basic results to prove the unlearnability of various classes of quantum systems in
Appendix F and G. To illustrate the challenge, consider an 𝑛-qubit system with an initial state 𝜌0, a
set of CPTP maps ℰ𝑦, 𝑦 ∈ 𝒴 where ℰ𝑦(𝐼) = 𝐼, and a POVM measurement ℳ0. It is not hard to see
that no algorithm can distinguish between the following two physical reality.

1. The initial state is slightly depolarized, 𝜌0 = 0.9|0𝑛⟩⟨0𝑛| + 0.1(𝐼/2𝑛). But the computational
basis measurement is perfect,ℳ0 = {|𝑏⟩⟨𝑏|}𝑏∈{0,1}𝑛 .
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2. The initial state is perfect, 𝜌0 = |0𝑛⟩⟨0𝑛|. But the computational basis measurement is slightly
depolarized,ℳ0 = {0.9|𝑏⟩⟨𝑏|+ 0.1(𝐼/2𝑛)}𝑏∈{0,1}𝑛 .

This is an immediate consequence of the fact that unitary commutes with the action of the depolariza-
tion noise. We will present a nontrivial example in Section II B and discuss the practical implications.

C. Predicting extrinsic behaviors of the world model

We can also consider a less restrictive viewpoint. After the classical agent finishes conducting
experiments to learn about the world model, we ask the classical agents to predict the outcome
probability distribution for experiments composed of 𝐿 CPTP maps; each such experiment is specified
by 𝑥, 𝑦1, . . . , 𝑦𝐿, 𝑧. We give a formal definition in Appendix I. The classical agent does not have to
find a physical description of the true world model 𝒲true and is free to use any approach to make
accurate prediction. The classical agent could always learn the extrinsic behavior by simply running
all the |𝒳 ||𝒴|𝐿|𝒵| experiments. But that procedure is very inefficient. In fact, in the worst case, no
algorithm can do better than this highly inefficient procedure up to a logarithmic factor.

Theorem 3 (Worst case complexity for predicting extrinsic behaviors). To predict the probability
of each experimental outcome to 𝜖-error for any experiment with 𝐿 maps, the classical agent has to
perform at least Ω(|𝒳 ||𝒴|𝐿|𝒵|/𝜖2) experiments in the worst case, and the classical agent can always
achieve the task by running 𝒪̃(|𝒳 ||𝒴|𝐿|𝒵|/𝜖2) experiments1.

To derive the lower bound, we construct world models that behave like a special kind of maze. The
classical agent has to navigate through the maze by performing a specific sequence of actions. Whenever
the classical agent makes the wrong action, he/she fails. We then combine with a proof technique used
in [9, 30] to establish the stated lower bound. The detailed proof is given in Appendix I.1. One way to
avoid the worst case complexity is to assume that we have found a set of composed states and POVM
elements, such that both sets span all possible states one can generate by performing actions in the
world model. The following theorem shows that in such cases an exponential speed-up in 𝐿 over the
worst case can be achieved. The full algorithm and proof is given in Appendix J.

Theorem 4 (Predicting extrinsic behavior). Suppose we have found a set of unknown linearly inde-
pendent states and a set of unknown POVM elements composed from 𝜌𝑥, ℰ𝑦,ℳ𝑧, such that both sets
span all the states one can prepare. Then, we can predict the probability of each experimental outcome
to 𝜖-error for any experiment with 𝐿 maps after running 𝒪̃((|𝒳 |+ 𝐿2|𝒴|+ |𝒵|)/𝜖2) experiments.

As we have seen in previous sections, there are examples where we cannot learn the true physical
reality, but existing gate set tomography protocols [4, 7, 20, 39] can still learn something in those
examples. The resolution here is that existing gate set tomography protocols should be understood
as methods for learning the extrinsic behaviors of the world model. Based on this resolution, the
algorithm used in the proof of Theorem 4 can be seen as a rigorous learning algorithm with provable
prediction guarantee for gate set tomography. A detailed discussion of gate set tomography viewed
from our mathematical theory is given in Appendix K.

II. Case studies

After providing the foundation for describing and understanding what we could learn from quantum
experiments, we present three case studies and discuss their practical implications.

1 𝒪̃(·) neglects the logarithmic factors.
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A. Learning under gate-independent noise on Clifford gates

A common assumption used in the randomized benchmarking literature [26, 33–35, 41] is that the
noise process on Clifford gates are independent of the specific gate. This assumption considers all
elements in the Clifford group and is crucial to ensure randomized benchmarking could extract an
accurate value for the average gate fidelity [40]. More precisely, when the classical agent performs a
Clifford gate 𝐶, the CPTP map implemented is

ℰ𝐶(𝜌) = 𝒩 (𝐶𝜌𝐶†), (4)

where 𝒩 is a CPTP map close to the identity that does not depend on the gate 𝐶. We leave open the
possibility of only requiring a gate-independent noise on a few Clifford gates. In the benchmarking
literature, it is also common to assume that there is a noisy zero state 𝜌0 that is close to the all zero
state |0𝑛⟩, and there is a noisy computational basis measurementℳ0 = {𝑀𝑏}𝑏∈{0,1}𝑛 , where𝑀𝑏 is close
to the state |𝑏⟩⟨𝑏|. We will refer to these assumptions as bounded gate-independent noise on Clifford
gates, and bounded noise on initial zero state and computational basis measurement. Typically, these
assumptions are expected to hold only for a subsystem consisting of a constant number of qubits in a
many-qubit quantum computer.

Under these assumptions, we give a simple and practical algorithm for learning every physical
operation up to an unknown parameter 𝑓 = ⟨0𝑛| 𝜌0 |0𝑛⟩. The parameter 𝑓 corresponds to the fidelity
of the noisy zero state 𝜌0, which is assumed to be close to one. Using techniques presented in the
appendices, it is straightforward to show that 𝑓 is unlearnable. To see this, assume Clifford gate noise
𝒩 is identity, and use the result in Appendix G showing that one cannot distinguish between whether
the state or the measurement is subject to a depolarizing channel. When Clifford gate noise 𝒩 is not
assumed to be identity, the learning does not become easier, hence 𝑓 is still unlearnable.

When the Clifford gate noise 𝒩 satisfies 𝒩 (𝐼) = 𝐼, 𝒩 will not depend on the unlearnable parameter
𝑓 and can be learned up to arbitrarily small error. Under this further assumption, several existing
algorithms robust to state preparation and measurement error have been proposed to learn 𝒩 using
information obtained from randomized benchmarking [26, 33, 41]. The best existing algorithm [26]
learns 𝒩 using 𝒪(𝑑8) experiments, where 𝑑 = 2𝑛. Here, we show that the proposed algorithm only
requires 𝒪(𝑑4 log 𝑑) experiments. The number of experiments scale linearly in the number of param-
eters 𝑑4 up to a logarithmic factor. The rigorous guarantees are presented in the following theorem
and the proof is given in Appendix H.

Theorem 5 (Learning under gate-independent noise on Clifford gates). Assume bounded gate-
independent noise on Clifford gates, and bounded noise on initial zero state and computational basis
measurement. All states 𝜌𝑥, processes ℰ𝑦, and POVM measurements ℳ𝑧 in the quantum system can
be learned up to a single unlearnable parameter 𝑓 = ⟨0𝑛| 𝜌0 |0𝑛⟩.

Furthermore, the Choi matrix for the Clifford gate noise 𝒩 can be learned up to 𝜖 error in Hilbert-
Schmidt norm using 𝒪(𝑑4 log 𝑑/𝜖2) experiments assuming 𝒩 (𝐼) = 𝐼.

Proof idea. We conduct two sets of randomized experiments to learn about the noisy initial state 𝜌0,
the Clifford gate noise 𝒩 , and the noisy measurement ℳ0. The first set of experiments prepares 𝜌0,
evolves by ℰ𝐶 for a random Clifford 𝐶, and measures ℳ0. The second set of experiments prepares
𝜌0, evolves by ℰ𝐶1 for a random Clifford 𝐶1, evolves by ℰ𝐶2 for a second random Clifford 𝐶2, and
measuresℳ0. The postprocessing is essentially the same as classical shadow formalism [29], which is
based on least-square estimator for the quantum objects [22]. Despite the noise in state, maps, and
measurements, the unitary 2-design property of random Clifford gates allows us to essentially neglect
the noise processes and proceed with the same learning algorithm. We show that from the first set
of experiments, we can learn the state 𝜌0 and the POVM 𝒩 †(ℳ0), which corresponds applying 𝒩
followed by the POVMℳ0, up to the unlearnable parameter 𝑓 . Then, the second set of experiments
allows us to learn 𝒩 , which can then be used to error correct the POVM 𝒩 †(ℳ0) to learnℳ0.

With data obtained from the first and the second sets of randomized experiments, we can learn all
physical operations. To learn state 𝜌𝑥, we repeat the randomized experiment: prepare 𝜌𝑥, evolve by
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ℰ𝐶 for a random Clifford 𝐶, and measures ℳ0. To learn CPTP map ℰ𝑦, we repeat the randomized
experiment: prepare 𝜌0, evolve by ℰ𝐶1 for a random Clifford 𝐶1, evolve by ℰ𝑦, evolve by ℰ𝐶2 for
a second random Clifford 𝐶2, and measures ℳ𝑧. To learn POVM ℳ𝑧, we repeat the randomized
experiment: prepare 𝜌0, evolve by ℰ𝐶 for a random Clifford 𝐶, and measuresℳ𝑧.

Unitary design property of random Clifford gates and standard concentration inequality can be
used to characterize the number of required experiments. As an example, we show that the pro-
posed algorithm learns the Clifford gate noise 𝒩 to 𝜖 error from a total of 𝒪(𝑑4 log 𝑑/𝜖2) randomized
experiments assuming 𝒩 (𝐼) = 𝐼.

B. Bit-flip or phase-flip error?

In this case study, we consider the task of learning the noise on Clifford and T gates when the
noise channel depends on the gate. Using randomized compiling for tailoring noise process [48], we
can consider the CPTP map for a Clifford or T gate 𝐺 to be given by

ℰ𝐺(𝜌) = 𝒫𝐺(𝐺𝜌𝐺†), (5)

where 𝒫𝐺 is a Pauli channel that depends on the gate 𝐺 and is close to the identity. However, in the
following theorem, we show that it is impossible to learn the true gate-dependent Pauli noise even in
a single-qubit system.

Theorem 6 (Gate-dependent Pauli noise is unlearnable with Clifford+T gates). Consider a qubit
system. Suppose one can prepare |0⟩ perfectly and any state 𝜌 subject to a small noise, measure in the
computational basis perfectly, and apply Clifford gates and T gate, where each gate is followed by an
unknown gate-dependent Pauli noise channel close to identity. It is impossible for any algorithm to
learn the gate-dependent Pauli noise channels to arbitrarily small error.

Proof idea. The theorem is established by proving that one is unable to distinguish if a bit-flip (X)
error is more likely to happen than a phase-flip (Z) error after the Hadamard gate, which correspond
to two different physical realities not related by a global unitary or anti-unitary transformation. Note
that the quantum system can only prepare zero state |0⟩ and measure in the computational basis
perfectly, which are tomographically incomplete to learn any quantum channel. Furthermore for a
given gate 𝐺, we need to first learn the Pauli noise on the other gates in order to learn the Pauli
noise 𝒫𝐺 on 𝐺. We show that this interdependency cannot be resolved by analyzing the graphical
representation for the actions of Clifford and T gates on the Pauli operators. Together, one could
use the reduction techniques in Appendix E to prove the unlearnability. The full proof is given in
Appendix F.

This result may seem to contradict claims in known protocols, such as gate set tomography [4, 7, 20,
39] and ACES [16]. To resolve the conflict, recall that gate set tomography learns an effective model
that can only be used to predict the extrinsic behaviors. The effective model does not describe the
intrinsic descriptions. Hence, gate set tomography is not learning the true noise process. In ACES [16],
it was assumed that one could prepare any tensor product of single-qubit stabilizer states perfectly.
By making this additional assumption, one could avoid this no-go theorem.

The main implication of this result applies to the setting where we would like to improve the
quantum system by first identifying the noise process. For example, one may want to understand if
the Hadamard gate is experiencing a higher rate of bit-flip error or phase-flip error, which could be
a useful information for improving the device. Theorem 6 shows that sometimes it is impossible to
identify the noise process by any benchmarking protocol.

C. Noisy quantum advantage in learning from experiments

Recently an experiment has been conducted on the Sycamore quantum processor that demonstrate
a significant advantage in using quantum devices – a combination of quantum memory and quantum
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computers – to learn about physical states and dynamics [28]. The experimental demonstration is based
on a series of mathematical results [1, 9, 10, 30]. However, existing proofs focused on an idealized
setting, where the quantum device used for learning is perfectly known and controllable. The only
unknown is the physical state we are interested in learning about. In practice, this is not the case. In
addition to the target physical state being unknown, the initial states, gates, and measurements in the
quantum device used for learning are noisy and also not known perfectly. Nevertheless, experimental
demonstrations on up to 40 qubits show that a significant quantum advantage still holds in a currently
available noisy quantum processor [28].

In this section, we establish provable advantage for the experiments conducted in [28], where the
quantum device used for learning is noisy and the noise process is not known. We focus on the task of
predicting many incompatible properties in physical systems studied in [9, 28, 30], which corresponds
to the first experiment in [28]. In this task, the learning agent is given an unknown physical system
described by a state 𝜌. In conventional experiments, the agent performs measurements on 𝜌 to gather
classical data. Based on the data, the agent can adaptively change the measurements to obtain more
data. After multiple rounds of measurements, the agent learns a model of 𝜌. With the help of quantum
devices, the agent can consider a more powerful form of experiments, which was refer to as quantum-
enhanced experiments [28]. In quantum-enhanced experiments, the agent can load each copy of the
state 𝜌 into a quantum computer. After storing multiple copies of 𝜌 in the quantum memory, the agent
can perform quantum data analysis on multiple copies of 𝜌 to learn a model of 𝜌. In both conventional
and quantum-enhanced experiments, the agent use the learned model to predict properties of 𝜌.

Here, we compare conventional experiments with perfect measurements to quantum-enhanced ex-
periments based on a noisy quantum device. The noisy quantum device can prepare a noisy and
unknown initial product state, load a copy of the unknown physical system 𝜌 into part of the qubits,
apply noisy and unknown single- and two-qubit gates, as well as perform a noisy and unknown product
measurement. We can apply multiple layers of gates to perform quantum processing. Each layer of
gates contains multiple non-overlapping gates applied in parallel. The CPTP map implemented by
each gate depends arbitrarily on all other gates implemented in the same layer. We do not assume
that each gate is affected by only a constant number other gates. And the CPTP maps are not guar-
anteed to be close to the ideal unitary channel up to a constant error. Due to the lack of sufficient
assumptions, it is impossible to learn the intrinsic descriptions of the device to arbitrary accuracy.
Furthermore, an exponential number of experiments is required to learn the extrinsic behaviors to
high accuracy because the noise processes are highly non-local. Because the noise cannot be learned
efficiently, it is unclear how one can perform standard error mitigation techniques [14, 31, 46].

Even if the device cannot be learned to arbitrarily small error, we show that one can learn the
intrinsic descriptions of the device up to a certain threshold. Recall that one of the central ideas in the
proof of Theorem 2 for learning intrinsic descriptions is to find states that satisfy a particular geometry.
The geometry fixes the intrinsic descriptions of the states, and hence we can learn the states. If we
find states that approximately satisfy some of the geometry, then the intrinsic descriptions we learn
will only be partially correct. Building on this idea, we give a procedure that finds operations such
that the experimental outcomes satisfy a distinctive geometry. If the geometry is satisfied up to an
error 𝜂, we can guarantee that the errors in each of the two-qubit operations is upper bounded by
𝜖 = 𝒪(𝜂). Details of the procedure and proof is given in Appendix L.2.

Despite having an unknown error of 𝜖 per two-qubit operations, Theorem 7 shows that a large
polynomial advantage can be achieved with noisy quantum-enhanced experiments. The unknown state
𝜌 does not need to have any quantum entanglement in the system to yield the quantum advantage.

Theorem 7 (Quantum advantage with noisy devices). There is a distribution over unentangled phys-
ical state 𝜌 and properties we would like to predict, such that if we need 𝑁Q samples of 𝜌 in noisy
quantum-enhanced experiments to predict the property, the required number of samples in noiseless
conventional experiments must be 𝑁C = Ω(𝑁𝑎

Q), where 𝑎 = − log(2)/(2 log(1− 4𝜖)) = 𝒪(1/𝜖) and 𝜖 is
the error on each of the two-qubit operations.

If each of the two-qubit operations has an error 𝜖 of at most 0.5%, then we can obtain a separation of
𝑁C = Ω(𝑁17.15

Q ). The detailed proof of Theorem 7 is given in Appendix L.
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III. Conclusion

This work provides a rigorous theory for reasoning about what we can learn from noisy quantum
experiments. We established fundamental results to understand our ability to learn intrinsic physical
descriptions and predict extrinsic behaviors.

The rigorous theory opens up several future directions. First of all, the essential mechanisms that
determine the learnability and unlearnability of a class of world models are yet to be discovered. We
have presented a set of deduction rules in Appendix E relating the learnability between different world
model classes. Could we pinpoint a set of model classes where the learnability of all classes of world
models could be derived using the set of deduction rules? Another interesting direction is to capture
the central properties that enable humans to learn about the physical processes in cold atom systems,
solid-state systems, and chemical systems, despite the unlearnability results. Could we incorporate
these properties into a machine learning algorithm to enhance their learning ability?

On the practical side, how should we confront these unlearnability results? One way is to engineer
the quantum system such that the noise in the system can be more easily learned. To proceed in this
route, we need to have a better understanding on what model classes are easier to learn. Designing
quantum systems with easier-to-learn operations can be related to a principle in software design, where
one is advised to design programs that are easier to trouble-shoot. Answering these questions would
not only help the development of quantum technology, but also shed light on what we could ultimately
learn about the physical world.
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A. Finite-dimensional quantum world models

We consider a general framework involving classical agents interacting with a finite-dimensional
quantum world. This is a mathematical framework for reasoning about what quantum physicists
could learn from a finite-dimensional quantum system that they can interact with by various means.

Definition A.1 (𝑑-dimensional quantum world). Given sets 𝒳 ,𝒴,𝒵 denoting the action space and
a finite set ℬ denoting the possible measurement outcomes. A 𝑑-dimensional quantum world 𝒲 is a
tuple with three sets

𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵) , (A1)

where 𝜌𝑥 is a 𝑑-dimensional density matrix, ℰ𝑦 is a 𝑑-dimensional CPTP map, ℳ𝑧 = {𝑀𝑧𝑏}𝑏∈ℬ is a
POVM with finitely many elements indexed by 𝑏 ∈ ℬ.

Consider 𝑑 = 2, which is equivalent to a qubit system. We give an example to illustrate the above
definition. Let 𝒳 = {(𝜃, 𝜑) | 𝜃 ∈ [0, 𝜋], 𝜑 ∈ [0, 2𝜋]} be an uncountably large set. And we define

𝜌𝜃,𝜑 =
𝐼 + sin(𝜃) cos(𝜑)𝑋 + sin(𝜃) sin(𝜑)𝑌 + cos(𝜃)𝑍

2
. (A2)

In this world, we can prepare any pure state on the single-qubit bloch sphere. Let 𝒴 = {ℎ, 𝑡} be
a finite set consisting of two elements. We consider ℰℎ(𝜌) = 𝐻𝜌𝐻† to be the Hadamard gate and
ℰ𝑡(𝜌) = 𝑇𝜌𝑇 † to be the T gate. Finally, we consider 𝒵 = {0} to be a singleton and ℬ = {0, 1} to be a
two-outcome space, whereℳ0 = {|0⟩⟨0|, |1⟩⟨1|} is the computational basis measurement. 𝒲 defines a
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single-qubit world where one can perform universal single-qubit quantum computation. Alternatively,
one could also consider 𝒳 to be a set of 𝑛⃗ ∈ R3 with ‖𝑛⃗‖2 ≤ 1. Or we could consider 𝒴 to be a set of
sequences where each sequence is a pulse sequence the experimentalist could use to control the qubit
system. Intuitively, 𝒳 ,𝒴,𝒵 contain descriptions of the actions an experimentalist could perform on
the finite-dimensional quantum system, and ℬ contains descriptions of the measurement outcomes.

Remark 1. In the above definition, we can have 𝑥1, 𝑥2 ∈ 𝒳 , such that 𝑥1 ̸= 𝑥2 but 𝜌𝑥1 = 𝜌𝑥2 . This
construction encodes the intuition that there could be two different actions an experimentalist could
perform that will result in the same initial state. For example, we can generate the state |1⟩ from |0⟩
by applying 𝜋 rotation along the X axis or the Y axis.

The experimentalists could interact with the 𝑑-dimensional quantum world by performing exper-
iments. The experimentalist selects a state 𝜌𝑥 to be prepared, composes various different evolutions
ℰ𝑦1 , . . . , ℰ𝑦𝐿 , then reads out the final state through a chosen measurement apparatusℳ𝑧.

Definition A.2 (Experiment). Given a 𝑑-dimensional quantum world 𝒲. An experiment is a list of
finite elements given as

𝐸 = (𝑥 ∈ 𝒳 , 𝑦1 ∈ 𝒴, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈ 𝒵). (A3)

Each experiment results in an outcome 𝑏 ∈ ℬ with probability tr (𝑀𝑧𝑏 (ℰ𝑦𝐿 ∘ . . . ∘ ℰ𝑦1) (𝜌𝑥)) .

As the experimentalists improve their physical control (lasers, cavity, etc.), more initial states
𝜌𝑥 can be created, more evolutions ℰ𝑦 can be performed, and more types of qubit readout ℳ𝑧 can
be achieved. We could imagine an ideal case, where we are able to generate all states, perform all
operations, and conduct all measurements. We consider such a world model to be complete. A formal
definition is given below.

Definition A.3 (Completeness). A 𝑑-dimensional 𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵) is complete if

• for all states 𝜌, ∃𝑥 ∈ 𝒳 , 𝜌𝑥 = 𝜌,

• for all CPTP maps ℰ , ∃𝑦 ∈ 𝒴, ℰ𝑦 = ℰ ,

• for all POVMℳ with outcomes indexed by 𝑏 ∈ ℬ, ∃𝑧 ∈ 𝒵,ℳ𝑧 =ℳ.

We say the world model 𝒲 has been extended to a richer world model 𝒲 ′ if 𝒲 ′ contains more
actions corresponding to more initial states, quantum evolutions, and POVM measurements. The
formal definition is given below.

Definition A.4 (Extension). A 𝑑-dimensional world model 𝒲 ′ =
(︀
{𝜌′𝑥}𝑥∈𝒳 ′ , {ℰ ′𝑦}𝑦∈𝒴 ′ , {ℳ′

𝑧}𝑧∈𝒵′
)︀

is
an extension of a 𝑑-dimensional world model𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵), denoted as𝒲 ′B𝒲,
if the following conditions hold

• 𝒳 ⊆ 𝒳 ′ and ∀𝑥 ∈ 𝒳 , 𝜌𝑥 = 𝜌′𝑥 (State extension),

• 𝒴 ⊆ 𝒴 ′ and ∀𝑦 ∈ 𝒴, ℰ𝑦 = ℰ ′𝑦 (CPTP map extension),

• 𝒵 ⊆ 𝒵 ′ and ∀𝑧 ∈ 𝒵,ℳ𝑧 =ℳ′
𝑧 (POVM extension).

We are now ready to define equivalence between two world models. Before giving the formal
definition, let us consider two 2-dimensional worlds 𝒲𝐴,𝒲𝐵 with the same spaces 𝒳 = {0},𝒴 =
{ℎ, 𝑡},𝒵 = {0},ℬ = {0, 1}. Furthermore, we consider the particular actions in the two world models
𝒲𝐴,𝒲𝐵 to be given by

𝜌𝐴0 = 𝐼/2, ℰ𝐴ℎ (𝜌) = 𝐻𝜌𝐻†, ℰ𝐴𝑡 (𝜌) = 𝑇𝜌𝑇 †, ℳ𝐴
0 = {|0⟩⟨0|, |1⟩⟨1|}, (A4)

𝜌𝐵0 = 𝐼/2, ℰ𝐵ℎ (𝜌) = 𝐼/2, ℰ𝐵𝑡 (𝜌) = 𝐼/2, ℳ𝐵
0 = {|0⟩⟨0|, |1⟩⟨1|}. (A5)
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It is not hard to show that we cannot distinguish between world A and B by performing experiments
using the limited set of actions — in both cases the measurement outcomes are sampled from the
uniform distribution. However, we can clearly see that the two world models are intrinsically different.
In particular, in world A, the set of maps is a universal gate set that generates a dense subset of SU(2).
But, in world B, all the maps are completely depolarizing channels. Even though world A and B can
not be distinguish using the limited set of actions 𝒳 = {0},𝒴 = {ℎ, 𝑡},𝒵 = {0}, the two worlds are
fundamentally different. By adding new actions, such as the ability to prepare some non-trivial states,
we can distinguish between the two world models by performing experiments.

To discuss these concepts in a rigorous manner, we formally define the following relations between
two world models 𝒲1,𝒲2. We consider two world models to be equal 𝒲1 = 𝒲2 if all of the states,
maps, and POVMs are equal. And we say the two world models are different 𝒲1 ̸= 𝒲2 if one of
the states, maps, or POVMs is different. In the above example, the two world models 𝒲𝐴,𝒲𝐵 are
different because the CPTP maps are different ℰ𝐴ℎ ̸= ℰ𝐵ℎ and ℰ𝐴𝑡 ̸= ℰ𝐵𝑡 .

Definition A.5 (Equality). Consider two 𝑑-dimensional world models 𝒲𝐴,𝒲𝐵 with the same spaces
𝒳 ,𝒴,𝒵,ℬ. 𝒲𝐴 is equal to 𝒲𝐵, denoted as 𝒲𝐴 =𝒲𝐵, if all states are the same 𝜌𝐴𝑥 = 𝜌𝐵𝑥 ,∀𝑥 ∈ 𝒳 , all
CPTP maps are the same ℰ𝐴𝑦 = ℰ𝐵𝑦 , ∀𝑦 ∈ 𝒴, and all POVMs are the same 𝑀𝐴

𝑧𝑏 =𝑀𝐵
𝑧𝑏,∀𝑧 ∈ 𝒵, 𝑏 ∈ ℬ.

Then, we consider two world models to be weakly indistinguishable if they can not be distinguished
using the set of actions in the world model. In the example given in Equation (A4) and (A5),𝒲𝐴,𝒲𝐵

are weakly indistinguishable because the measurement outcomes are always uniformly distributed.

Definition A.6 (Weakly indistinguishable). Consider two 𝑑-dimensional world models 𝒲𝐴,𝒲𝐵 with
the same spaces 𝒳 ,𝒴,𝒵,ℬ. 𝒲𝐴 and 𝒲𝐵 are weakly indistinguishable if for any experiment 𝐸 = (𝑥 ∈
𝒳 , 𝑦1 ∈ 𝒴, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈ 𝒵) and outcome 𝑏 ∈ ℬ, we have

tr
(︀
𝑀𝐴
𝑧𝑏

(︀
ℰ𝐴𝑦𝐿 ∘ . . . ∘ ℰ

𝐴
𝑦1

)︀
(𝜌𝐴𝑥 )

)︀
= tr

(︀
𝑀𝐵
𝑧𝑏

(︀
ℰ𝐵𝑦𝐿 ∘ . . . ∘ ℰ

𝐵
𝑦1

)︀
(𝜌𝐵𝑥 )

)︀
, (A6)

i.e., the probabilities for obtaining the outcome 𝑏 in experiment 𝐸 are the same.

And we say two world models are strongly indistinguishable or equivalent to one another if they can
not be distinguished by adding any set of actions. World models 𝒲𝐴,𝒲𝐵 are not equivalent because
adding a non-completely-mixed state enables us to distinguish between 𝒲𝐴 and 𝒲𝐵.

Definition A.7 (Strongly indistinguishable / Equivalence). Consider two 𝑑-dimensional world models
𝒲𝐴,𝒲𝐵 with the same spaces 𝒳 ,𝒴,𝒵,ℬ. 𝒲𝐴 and 𝒲𝐵 are equivalent or strongly indistinguishable,
denoted as 𝒲𝐴 ≡ 𝒲𝐵, if for all extensions of 𝒲𝐴,

𝒲 ′
𝐴 =

(︁
{𝜌𝐴′

𝑥 }𝑥∈𝒳 ′ , {ℰ𝐴′
𝑦 }𝑦∈𝒴 ′ , {ℳ𝐴′

𝑧 }𝑧∈𝒵′

)︁
B𝒲𝐴, (A7)

there exists an extension of 𝒲𝐵 with the same action space 𝒳 ′,𝒴 ′,𝒵 ′,

𝒲 ′
𝐵 =

(︁
{𝜌𝐵′

𝑥 }𝑥∈𝒳 ′ , {ℰ𝐵′
𝑦 }𝑦∈𝒴 ′ , {ℳ𝐵′

𝑧 }𝑧∈𝒵′

)︁
B𝒲𝐵, (A8)

such that 𝒲 ′
𝐴 and 𝒲 ′

𝐵 are weakly indistinguishable.

The above definition of equivalence has a natural characterization given by Theorem A.8. Before
stating the theorem, let us recall the definition of unitary and anti-unitary transformation 𝑈 . Given
a 𝑑× 𝑑 complex matrix 𝐶 with a chosen basis. We define 𝐶 to be the matrix where we take complex
conjugation for all entries in 𝐶. A unitary transformation 𝑈 is a 𝑑 × 𝑑 unitary matrix with 𝑈−1 =
𝑈 † that transforms 𝐶 to 𝑈𝐶𝑈−1 = 𝑈𝐶𝑈 †. An anti-unitary transformation 𝐴 is a product of a
𝑑 × 𝑑 unitary matrix 𝑈 and the complex conjugation operator 𝐾 that transforms 𝐶 to 𝐴𝐶𝐴−1 =
𝑈𝐶𝑈 †. Theorem A.8 shows that equivalent world models are related by a unitary or anti-unitary
transformation.
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Theorem A.8 (A characterization of equivalence). Consider two 𝑑-dimensional world models with
the same spaces 𝒳 ,𝒴,𝒵,ℬ,

𝒲𝐴 =
(︀
{𝜌𝐴𝑥 }𝑥∈𝒳 , {ℰ𝐴𝑦 }𝑦∈𝒴 , {ℳ𝐴

𝑧 }𝑧∈𝒵
)︀
, (A9)

𝒲𝐵 =
(︀
{𝜌𝐵𝑥 }𝑥∈𝒳 , {ℰ𝐵𝑦 }𝑦∈𝒴 , {ℳ𝐵

𝑧 }𝑧∈𝒵
)︀
. (A10)

𝒲𝐴 ≡ 𝒲𝐵 if and only if there exists a unitary or anti-unitary transformation 𝑈 , such that

𝜌𝐵𝑥 = 𝑈𝜌𝐴𝑥𝑈
−1, ∀𝑥 ∈ 𝒳 , (A11)

ℰ𝐵𝑦 (·) = 𝑈ℰ𝐴𝑦 (𝑈−1(·)𝑈)𝑈−1, ∀𝑦 ∈ 𝒴, (A12)

𝑀𝐵
𝑧𝑏 = 𝑈𝑀𝐴

𝑧𝑏𝑈
−1, ∀𝑧 ∈ 𝒵, 𝑏 ∈ ℬ. (A13)

We defer the proof to Appendix B. As an example, the following two world models with the action
spaces 𝒳 = {0},𝒴 = {ℎ, 𝑠} for Hadamard and Phase gates, 𝒵 = {0}, and outcome space ℬ = {0, 1}
are equivalent (related by an anti-unitary transformation 𝑋𝐾):

𝜌𝐴0 = |0⟩⟨0|, ℰ𝐴ℎ (𝜌) = 𝐻𝜌𝐻†, ℰ𝐴𝑠 (𝜌) = 𝑆𝜌𝑆†, ℳ𝐴
0 = {|0⟩⟨0|, |1⟩⟨1|}, (A14)

𝜌𝐵0 = |1⟩⟨1|, ℰ𝐵ℎ (𝜌) = 𝐻𝜌𝐻†, ℰ𝐵𝑠 (𝜌) = 𝑆𝜌𝑆†, ℳ𝐵
0 = {|1⟩⟨1|, |0⟩⟨0|}. (A15)

The possibility to describe the same physical world by two distinct descriptions arises from the intrinsic
degeneracy in quantum mechanics: the freedom to choose an arbitrary basis in the Hilbert space (the
unitary relation) or reverse the direction of time (the anti-unitary relation).

B. A characterization of equivalence: Proof

We will focus on showing that 𝒲𝐴 ≡ 𝒲𝐵 implies the existence of a unitary or anti-unitary trans-
formation. The other direction can be shown easily by noting that for all world model extensions of
𝒲𝐴, we can extend 𝒲𝐵 using the same unitary or anti-unitary transformation 𝑈 .

First, we extend world model 𝒲𝐴 to world model 𝒲 ′
𝐴 that comes with an expanded state prepa-

ration actions 𝒳 ′ = 𝒳 ∪ Ωpure and an expanded measurement actions 𝒵 ′ = 𝒵 ∪ Ωpure−POVM. In
particular, 𝜌𝐴′

𝜉 ,∀𝜉 ∈ Ωpure consists of all the 𝑑-dimensional pure states, and ℳ𝐴′
𝜁 , ∀𝜁 ∈ Ωpure−POVM

consists of all the POVMs such that a particular POVM element associated to 𝑏* ∈ ℬ is a pure
state. The definition of equivalence shows that there exists an extension 𝒲 ′

𝐵 with the same action
space as 𝒲 ′

𝐴 such that 𝒲 ′
𝐴 and 𝒲 ′

𝐵 are weakly indistinguishable, i.e., all experiments yield the same
distribution. The above condition yields the following,

tr(𝑀𝐴′
𝜁𝑏*𝜌

𝐴′
𝜉 ) = tr(𝑀𝐵′

𝜁𝑏*𝜌
𝐵′
𝜉 ), ∀𝜉 ∈ Ωpure, 𝜁 ∈ Ωpure−POVM. (B1)

This concludes the basic construction of the extended world models.
Recall that𝑀𝐴′

𝜁𝑏* , ∀𝜁 ∈ Ωpure−POVM consists of all pure states. Hence, for each 𝜉 ∈ Ωpure, there exists
𝜁(𝜉) ∈ Ωpure−POVM such that 𝑀𝐴′

𝜁𝑏* = 𝜌𝐴
′

𝜉 are the same pure state. We extend 𝜌𝐴′
𝜉 to an orthonormal

set of basis consisting of 𝑑 pure states {𝜌𝐴′
𝜉1
, . . . , 𝜌𝐴

′
𝜉𝑑
}, where 𝜉1 = 𝜉. We have the following from the

above construction and Eq. (B1),

tr
(︁
𝑀𝐴′

𝜁(𝜉𝑗)𝑏*
𝜌𝐴

′
𝜉𝑖

)︁
= 𝛿𝑖𝑗 = tr

(︁
𝑀𝐵′

𝜁(𝜉𝑗)𝑏*
𝜌𝐵

′
𝜉𝑖

)︁
, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑑}, (B2)

where 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise. We are now going to utilize the structure of the quantum
states and POVM elements, in particular, a quantum state is a positive-semidefinite matrix with trace
one, and a POVM element is a positive-semidefinite matrix with eigenvalues less than equal to one.
In particular, we use the following basic lemma that can be established by induction.

Lemma B.1. Consider ℓ ≥ 1. Given quantum states {𝜌𝑖}𝑖=1,...,ℓ and POVM elements {𝐹𝑗}𝑗=1,...,ℓ.
If tr(𝐹𝑗𝜌𝑖) = 𝛿𝑖𝑗 , ∀𝑖, 𝑗 ∈ {1, . . . , ℓ}, then the collection of eigenvectors of 𝜌𝑖 with non-zero eigenvalues
over all 𝑖 from 1 to ℓ span a subspace with dimension at least ℓ.
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Proof. Consider the eigenvectors of 𝜌𝑖 with non-zero eigenvalues to be {𝑣𝑖𝑎}𝑎∈𝐴𝑖 and the associated
eigenvalues be {𝑝𝑖𝑎}𝑎∈𝐴𝑖 , then

∑︀
𝑎∈𝐴𝑖

𝑝𝑖𝑎(𝑣
𝑖
𝑎)

†𝐹𝑖𝑣
𝑖
𝑎 = 1. Since 0 ≤ (𝑣𝑖𝑎)

†𝐹𝑖𝑣
𝑖
𝑎 ≤ 1 (from the definition of

POVM element), 𝑝𝑖𝑎 > 0 (we only consider non-zero eigenvalues),
∑︀

𝑎∈𝐴𝑖
𝑝𝑖𝑎 = 1 (from the definition

of quantum state), and
∑︀

𝑎∈𝐴𝑖
𝑝𝑎(𝑣

𝑖
𝑎)

†𝐹𝑖𝑣
𝑖
𝑎 = 1, we have

(𝑣𝑖𝑎)
†𝐹𝑖𝑣

𝑖
𝑎 = 1, ∀𝑎 ∈ 𝐴𝑖. (B3)

Similarly, for all 𝑗 ̸= 𝑖,
∑︀

𝑎∈𝐴𝑖
𝑝𝑎(𝑣

𝑖
𝑎)

†𝐹𝑗𝑣
𝑖
𝑎 = 0 implies that (𝑣𝑖𝑎)

†𝐹𝑗𝑣
𝑖
𝑎 = 0, ∀𝑎 ∈ 𝐴𝑖. Equivalently,√︀

𝐹𝑗𝑣
𝑖
𝑎 = 0,∀𝑎 ∈ 𝐴𝑖, (B4)

when 𝑖 ̸= 𝑗. With the basic results given above, we are ready to prove the statement through induction.
The base case ℓ = 1 is trivially true. Suppose the statement holds for ℓ − 1. We assume that all the
eigenvectors of 𝜌ℓ with non-zero eigenvalues lie in the span of the eigenvectors with non-zero eigenvalues
for 𝜌𝑖 with 𝑖 < ℓ. Under this assumption, for all 𝑎 ∈ 𝐴ℓ, there exists a set of coefficients {𝑐𝑖,𝑎′} such
that 𝑣ℓ𝑎 =

∑︀
𝑖<ℓ

∑︀
𝑎′∈𝐴𝑖

𝑐𝑖,𝑎′𝑣
𝑖
𝑎′ . This implies that

1 = (𝑣ℓ𝑎)
†𝐹ℓ𝑣

ℓ
𝑎 =

⎛⎝∑︁
𝑖<ℓ

∑︁
𝑎′∈𝐴𝑖

𝑐𝑖,𝑎′
√︀
𝐹ℓ𝑣

𝑖
𝑎′

⎞⎠†⎛⎝∑︁
𝑖<ℓ

∑︁
𝑎′∈𝐴𝑖

𝑐𝑖,𝑎′
√︀
𝐹ℓ𝑣

𝑖
𝑎′

⎞⎠ = 0. (B5)

The first equality follows from Eq. (B3). The last equality follows from Eq. (B4). The contradiction
shows that one of the eigenvectors of 𝜌ℓ with non-zero eigenvalues is not in the span of the eigenvectors
with non-zero eigenvalues for 𝜌𝑖 with 𝑖 < ℓ. Therefore the statement holds for ℓ.

If there exists 𝑘 ∈ {1, . . . , 𝑑}, such that the rank of 𝑀𝐵′

𝜁(𝜉𝑘)𝑏*
is greater than one, then the 𝑑 − 1

states {𝜌𝐵′
𝜉𝑖
}𝑖 ̸=𝑘 must have their eigenvectors with non-zero eigenvalues span a (𝑑 − 2)-dimensional

subspace to ensure that tr
(︁
𝑀𝐵′

𝜁(𝜉𝑘)𝑏*
𝜌𝐵

′
𝜉𝑖

)︁
= 0. However, from Lemma B.1, the eigenvectors of the

𝑑− 1 states {𝜌𝐵′
𝜉𝑖
}𝑖 ̸=𝑘 with non-zero eigenvalues must span at least a (𝑑− 1)-dimensional state space.

The contradiction implies that 𝑀𝐵′

𝜁(𝜉𝑗)𝑏*
,∀𝑗 ∈ {1, . . . , 𝑑} must all be rank-one matrices. The condition

tr
(︁
𝑀𝐵′

𝜁(𝜉1)𝑏*
𝜌𝐵

′
𝜉1

)︁
= 1 then implies that 𝜌𝐵′

𝜉1
must be a pure state and 𝑀𝐵′

𝜁(𝜉1)𝑏*
= 𝜌𝐵

′
𝜉1

. We have now
shown the following statement:

∀𝜉 ∈ Ωpure, 𝜌𝐵′
𝜉 is a pure state and the POVM element 𝑀𝐵′

𝜁(𝜉)𝑏* = 𝜌𝐵
′

𝜉 . (B6)

An implication of this result is that ∀𝜉1, 𝜉2 ∈ Ωpure, we have

tr
(︁
𝜌𝐴

′
𝜉1 𝜌

𝐴′
𝜉2

)︁
= tr

(︁
𝑀𝐴′

𝜁(𝜉1)𝑏*
𝜌𝐴

′
𝜉2

)︁
= tr

(︁
𝑀𝐵′

𝜁(𝜉1)𝑏*
𝜌𝐵

′
𝜉2

)︁
= tr

(︁
𝜌𝐵

′
𝜉1 𝜌

𝐵′
𝜉2

)︁
, (B7)

where the second equation follows from Eq. (B1).
We can now construct a transformation 𝑇 over pure state space by considering 𝑇 (𝜌𝐴′

𝜉 ) = 𝜌𝐵
′

𝜉 ,∀𝜉 ∈
Ωpure. 𝑇 is a transformation that takes pure states to pure states that satisfies

tr
(︁
𝜌𝐴

′
𝜉1 𝜌

𝐴′
𝜉2

)︁
= tr

(︁
𝑇 (𝜌𝐴

′
𝜉1 )𝑇 (𝜌

𝐴′
𝜉2 )
)︁
,∀𝜉1, 𝜉2 ∈ Ωpure, (B8)

as a result of Eq. (B7). Such a transformation 𝑇 is also known as a symmetry transformation. By
Wigner’s theorem, 𝑇 must take the following form:

𝑇 (𝜌) = 𝑈𝜌𝑈−1, (B9)

where 𝑈 is a unitary or an anti-unitary transformation. For a proof of Wigner’s theorem, see Ap-
pendix A of Chapter 2 in The Quantum Theory of Fields, Vol. 1, by Weinberg. The above represen-
tation of the symmetry transformation 𝑇 yields

𝜌𝐵
′

𝜉 = 𝑈𝜌𝐴
′

𝜉 𝑈
−1, ∀𝜉 ∈ Ωpure. (B10)
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Using Eq. (B6), we also have the following relation for a subset of POVM elements,

𝑀𝐵′

𝜁(𝜉)𝑏* = 𝑈𝑀𝐴′

𝜁(𝜉)𝑏*𝑈
−1, ∀𝜉 ∈ Ωpure. (B11)

Intuitively, we will now use the pure states 𝜌𝜉, ∀𝜉 ∈ Ωpure to perform quantum POVM tomography.
Then use the rank-one POVM elements 𝑀𝜁(𝜉)𝑏* , ∀𝜉 ∈ Ωpure to perform quantum state tomography.
Finally, we use both 𝜌𝜉 and 𝑀𝜁(𝜉)𝑏* to perform quantum process tomography. Together, we have
established the statement of Theorem A.8.

a. POVMs: ∀𝑧 ∈ 𝒵, 𝑏 ∈ ℬ, we have tr(𝑀𝐴′
𝑧𝑏 𝜌

𝐴′
𝜉 ) = tr(𝑀𝐵′

𝑧𝑏 𝜌
𝐵′
𝜉 ) = tr(𝑀𝐵′

𝑧𝑏 𝑈𝜌
𝐴′
𝜉 𝑈

−1), ∀𝜉 ∈ Ωpure.
The first equality follows from the weak indistinguishability between𝒲 ′

𝐴 and𝒲 ′
𝐵. The second equality

follows from Eq. (B10). We consider a measure 𝜇𝜉 over 𝜉 such that 𝜌𝐴′
𝜉 forms the Haar measure

over the pure state space. The Haar integration formulas
∫︀
𝑑𝜇|𝜓⟩⟨𝜓| = 𝐼/𝑑 and

∫︀
𝑑𝜇|𝜓⟩⟨𝜓|⊗2 =

(𝐼 + SWAP)/(𝑑(𝑑+ 1)) give us

tr(𝑀𝐴′
𝑧𝑏 )

𝑑
=

∫︁
𝑑𝜇𝜉 tr(𝑀

𝐴′
𝑧𝑏 𝜌

𝐴′
𝜉 ) =

∫︁
𝑑𝜇𝜉 tr(𝑀

𝐵′
𝑧𝑏 𝑈𝜌

𝐴′
𝜉 𝑈

−1) =
tr(𝑀𝐵′

𝑧𝑏 )

𝑑
, (B12)

tr(𝑀𝐴′
𝑧𝑏 )𝐼 +𝑀𝐴′

𝑧𝑏

𝑑(𝑑+ 1)
=

∫︁
𝑑𝜇𝜉 tr(𝑀

𝐴′
𝑧𝑏 𝜌

𝐴′
𝜉 )𝜌𝐴

′
𝜉 =

∫︁
𝑑𝜇𝜉 tr(𝑀

𝐵′
𝑧𝑏 𝑈𝜌

𝐴′
𝜉 𝑈

−1)𝜌𝐴
′

𝜉 (B13)

=
tr(𝑀𝐵′

𝑧𝑏 )𝐼 + 𝑈−1𝑀𝐵′
𝑧𝑏 𝑈

𝑑(𝑑+ 1)
. (B14)

Therefore, ∀𝑧 ∈ 𝒵, 𝑏 ∈ ℬ,𝑀𝐵
𝑧𝑏 =𝑀𝐵′

𝑧𝑏 = 𝑈𝑀𝐴′
𝑧𝑏 𝑈

−1 = 𝑈𝑀𝐴
𝑧𝑏𝑈

−1 as stated in Theorem A.8.
b. States: ∀𝑥 ∈ 𝒳 , we have tr(𝑀𝐴′

𝜁(𝜉)𝑏*𝜌
𝐴′
𝑥 ) = tr(𝑀𝐵′

𝜁(𝜉)𝑏*𝜌
𝐵′
𝑥 ) = tr(𝑈𝑀𝐴′

𝜁(𝜉)𝑏*𝑈
−1𝜌𝐵

′
𝑥 ),∀𝜉 ∈ Ωpure.

The first equality follows from the weak indistinguishability between𝒲 ′
𝐴 and𝒲 ′

𝐵. The second equality
follows from Eq. (B11). We consider a measure 𝜇𝜉 over 𝜉 such that 𝑀𝐴′

𝜁(𝜉)𝑏* forms the Haar measure
over the pure state space. The Haar integration formulas give us

𝐼 + 𝜌𝐴
′

𝑥

𝑑(𝑑+ 1)
=

∫︁
𝑑𝜇𝜉 tr(𝑀

𝐴′

𝜁(𝜉)𝑏*𝜌
𝐴′
𝑥 )𝑀𝐴′

𝜁(𝜉)𝑏* (B15)

=

∫︁
𝑑𝜇𝜉 tr(𝑈𝑀

𝐴′

𝜁(𝜉)𝑏*𝑈
−1𝜌𝐵

′
𝑥 )𝑀𝐴′

𝜁(𝜉)𝑏* =
𝐼 + 𝑈−1𝜌𝐵

′
𝑥 𝑈

𝑑(𝑑+ 1)
. (B16)

Therefore, ∀𝑥 ∈ 𝒳 , 𝜌𝐵𝑥 = 𝜌𝐵
′

𝑥 = 𝑈𝜌𝐴
′

𝑥 𝑈
−1 = 𝑈𝜌𝐴𝑥𝑈

−1 as stated in Theorem A.8.
c. CPTP maps: ∀𝑦 ∈ 𝒴, we have ∀𝜉1, 𝜉2 ∈ Ωpure,

tr(𝑀𝐴′

𝜁(𝜉2)𝑏*
ℰ𝐴′
𝑦 (𝜌𝐴

′
𝜉1 )) = tr(𝑀𝐵′

𝜁(𝜉2)𝑏*
ℰ𝐵′
𝑦 (𝜌𝐵

′
𝜉1 )) = tr(𝑈𝑀𝐴′

𝜁(𝜉)𝑏*𝑈
−1ℰ𝐵′

𝑦 (𝑈𝜌𝐴
′

𝜉1𝑈
−1)). (B17)

From the same analysis for states, we have

ℰ𝐴′
𝑦 (𝜌𝐴

′
𝜉1 ) = 𝑈−1ℰ𝐵′

𝑦 (𝑈𝜌𝐴
′

𝜉1𝑈
−1)𝑈. (B18)

Because 𝜌𝐴′
𝜉1

can be any pure state, we have

𝑈ℰ𝐴𝑦 (𝑈−1(·)𝑈)𝑈−1 = 𝑈ℰ𝐴′
𝑦 (𝑈−1(·)𝑈)𝑈−1 = ℰ𝐵′

𝑦 (·) = ℰ𝐵𝑦 (·) (B19)

as stated in Theorem A.8.

C. Foundations for learning intrinsic descriptions

The goal of learning is to conduct experiments to gain knowledge about the actual world model
among a collection of potential world models. Learning theory provides a formal language to study
such an information gathering process. For learning about a quantum-mechanical world, we would
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like to know what quantum-mechanical operations each action 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴, 𝑧 ∈ 𝒵 corresponds to
assuming the true world model belongs to a specified set of world models.

One should think of the learning process as follows. A classical agent is given the premise that the
true world model belongs to some set of world models. Then, the classical agent conducts experiments
to learn what the true model is. The set of possible models is called the concept class (often when
each model is a classical Boolean function), hypothesis class (often when each model is a function from
space 𝑋 to space 𝑌 ), or model class in machine learning. We will use the less loaded word, model
class, to refer to a set of potential world models. In many branches of mathematics, including learning
theory [37], a class is a set of mathematical objects. We will follow the same convention here.

Definition C.1 (Model class for 𝑑-dimensional quantum world). Given sets 𝒳 ,𝒴,𝒵 denoting the
action spaces and set ℬ denoting the outcome space. A 𝑑-dimensional model class 𝒬 over 𝒳 ,𝒴,𝒵,ℬ
is a set {𝒲} of 𝑑-dimensional quantum world models with the same spaces 𝒳 ,𝒴,𝒵,ℬ.

Recall that some world models are equivalent to one another (describe the same physical reality)
while not being equal (the mathematical description looks nominally different), i.e., 𝒲1 ̸= 𝒲2 but
𝒲1 ≡ 𝒲2. This is intrinsic to the description of quantum mechanics as we have shown in Theorem A.8.
When a model class contains two world models that are nominally different but physically the same,
we say the model class is redundant. A formal definition is given below.

Definition C.2 (Redundant model class). Given sets 𝒳 ,𝒴,𝒵,ℬ and a model class 𝒬 = {𝒲} over
𝒳 ,𝒴,𝒵,ℬ. 𝒬 is redundant if ∃𝒲1 ̸=𝒲2 ∈ 𝒬, 𝒲1 ≡ 𝒲2.

Another basic concept about model classes is that two model classes could be equivalent to one
another as a result of the equivalence of world models. For example, if we have three equivalent world
models 𝒲 ≡ 𝒲1 ≡ 𝒲2, then the model class 𝒬 = {𝒲} contains the same set of equivalent world
models as 𝒬̃ = {𝒲1,𝒲2}. Hence, we say the two model classes are equivalent. We give the formal
definition of equivalent model classes below.

Definition C.3 (Equivalent model classes). Given sets 𝒳 ,𝒴,𝒵,ℬ. Model classes 𝒬, 𝒬̃ over 𝒳 ,𝒴,𝒵,ℬ
are equivalent if and only if ∀𝒲 ∈ 𝒬,∃𝒲̃ ∈ 𝒬̃,𝒲 ≡ 𝒲̃, and ∀𝒲̃ ∈ 𝒬̃, ∃𝒲 ∈ 𝒬,𝒲 ≡ 𝒲̃.

A redundant model class is not preferred as the same physical reality is described by two different
representations. However, the following basic proposition shows that a redundant model class is
equivalent to a non-redundant model class. For example, if 𝒬 = {𝒲1,𝒲2,𝒲3}, where 𝒲1 ≡ 𝒲2 and
𝒲1 ̸≡ 𝒲3, then we have 𝒬 is equivalent to 𝒬′ = {𝒲1,𝒲3}.

Proposition C.4. Given sets 𝒳 ,𝒴,𝒵,ℬ and a model class 𝒬 = {𝒲} over 𝒳 ,𝒴,𝒵,ℬ. There exists
a non-redundant model class 𝒬̃ over 𝒳 ,𝒴,𝒵,ℬ, such that 𝒬̃ is equivalent to 𝒬.

Proof. We partition all world models in 𝒬 into equivalence classes, where all models in the same
equivalence class are equivalent to one another, and those that are in different equivalence classes are
not equivalent. We choose one representative from each equivalence class of world models in 𝒬. We
define 𝒬̃ to be the set of the representatives. 𝒬̃ is equivalent to 𝒬 and 𝒬̃ is non-redundant.

After defining and illustrating some basic properties of model classes, we consider the learnability
of a model class. We say a model class is learnable if for any world model 𝒲 in the model class,
the classical agent can identify the physical operations to an arbitrarily small error up to a global
unitary or anti-unitary transformation using a finite number of experiments. The unitary or anti-
unitary transformation 𝑈 is necessary as Theorem A.8 states that two world models related by 𝑈 are
equivalent and describe the same physical reality. The transformation 𝑈 corresponds to a change of
basis in the quantum Hilbert space and potentially followed by a complex conjugation operation.

Definition C.5 (Learnability of a model class). Given sets 𝒳 ,𝒴,𝒵,ℬ and a model class 𝒬 = {𝒲}
for 𝑑-dimensional world models over 𝒳 ,𝒴,𝒵,ℬ. The model class 𝒬 is learnable if ∀ 𝜖, 𝛿 > 0, ∀𝒲 ∈ 𝒬,
there exists a unitary or anti-unitary transformation 𝑈 ,
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• ∀𝑥 ∈ 𝒳 , with probability ≥ 1 − 𝛿, a classical agent can conduct finitely many experiments as
defined in Def. A.2 to output 𝜌𝑥 satisfying

⃦⃦
𝜌𝑥 − 𝑈𝜌𝑥𝑈−1

⃦⃦
1
≤ 𝜖,

• ∀ 𝑦 ∈ 𝒴, with probability ≥ 1 − 𝛿, a classical agent can conduct finitely many experiments as
defined in Def. A.2 to output ℰ̃𝑦 satisfying

⃦⃦⃦
ℰ𝑦 − 𝑈 ℰ̃𝑦(𝑈−1(·)𝑈)𝑈−1

⃦⃦⃦
◇
≤ 𝜖.

• ∀ 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ, with probability ≥ 1−𝛿, a classical agent can conduct finitely many experiments
as defined in Def. A.2 to output 𝑀̃𝑧𝑏 satisfying

⃦⃦⃦
𝑀𝑧𝑏 − 𝑈𝑀̃𝑧𝑏𝑈

−1
⃦⃦⃦
1
≤ 𝜖.

In many scenarios, it is too much to ask for the ability to learn everything about a world model,
i.e., all initial states, CPTP maps, and measurements. For example, we might only want to predict
a property of one of the possible initial state, such as its purity. Predicting properties can often be
significantly more efficient than learning the full description [29]. Furthermore, even if a model class
𝒬 is unlearnable according to the above definition, we may still be able to predict some properties.

Definition C.6 (Predictability of a property). Given sets 𝒳 ,𝒴,𝒵,ℬ, a model class 𝒬 = {𝒲} for 𝑑-
dimensional world models over 𝒳 ,𝒴,𝒵,ℬ, and a function 𝑓 that maps a world model𝒲 to a property
represented by a value in R. The property 𝑓 is predictable in the model class 𝒬 if ∀ 𝜖, 𝛿 > 0, ∀𝒲 ∈ 𝒬,
with probability ≥ 1−𝛿, a classical agent can conduct finitely many experiments as defined in Def. A.2
to output 𝑜 ∈ R satisfying |𝑓(𝒲)− 𝑜| ≤ 𝜖.

D. A general theorem for learning intrinsic physical descriptions

The goal of this appendix is to prove the following theorem. Here, we consider a model class 𝒬
such that for any candidate world model 𝒲 in 𝒬, there exists an action to prepare a pure state, a set
of actions for implementing a universal set of unitaries, and an action for implementing a nontrivial
POVM. A trivial POVM produces a measurement outcome independent of the input state. The
actions that satisfy the above conditions could be different for different candidate world model 𝒲.
The classical agent has no knowledge of what these actions are and what the corresponding physical
operations are. Furthermore the model class 𝒬 could contain uncountably many candidate world
models. The theorem states that even without knowing what any action is, the classical agent can
learn the intrinsic descriptions of all actions when the actions enable the exploration of the entire
quantum state space.

Theorem D.1 (Restatement of Theorem 2). Given finite sets 𝒳 ,𝒴,𝒵,ℬ. Consider a 𝑑-dimensional
model class 𝒬 over action spaces 𝒳 ,𝒴,𝒵 and outcome space ℬ. Suppose that for all 𝒲 =
({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑥}𝑥∈𝒵) ∈ 𝒬,

• ∃𝑥 ∈ 𝒳 , 𝜌𝑥 is pure.

• ∃𝑦1, . . . , 𝑦𝑘 ∈ 𝒴, ℰ𝑦1 , . . . ℰ𝑦𝑘 constitute a universal set of unitary transformations.

• ∃𝑧 ∈ 𝒵, ℳ𝑧 has at least one element not proportional to identity.

Then, 𝒬 is learnable.

To prove Theorem D.1, we give a learning algorithm such that for all world model 𝒲 in 𝒬, the
algorithm learns a world model 𝒲̃ that satisfies 𝒲̃ ≡ 𝒲 approximately, i.e., all physical descriptions
of the actions in 𝒳 ,𝒴,𝒵 are related by a global unitary or anti-unitary transformation (see Theo-
rem A.8). The approximation error can be made arbitrarily close to zero as the algorithm conducts
more experiments. From Definition C.5 on learnability of model class, we have 𝒬 is learnable.

In the following, we present an important lemma used in the proof. Then, we separate each step
of the learning algorithm to learn the actions in the world model into subsections. The proof will
consider the dimension 𝑑 to be a constant.
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D.1. A lemma on generating Haar-random unitaries

The proof of Theorem D.1 relies on the following lemma about the generation of approximate Haar
measure using a universal set of unitaries. Here, we say 𝑈1, . . . , 𝑈𝑘 forms a universal set of unitaries if
the set 𝒰 = {𝑈1, . . . , 𝑈𝑘, 𝑈

−1
1 , . . . , 𝑈−1

𝑘 } generates a dense subgroup of the special unitary group. We
follow the standard terminology, where the subgroup generated by the set 𝒰 is the group consisting of
elements that can be written as a product of elements in 𝒰 .

Definition D.2 (Real-valued Lipschitz function). A real-valued Lipschitz function 𝜑 over the special
unitary group satisfies |𝜑(𝑈)− 𝜑(𝑉 )| ≤ ‖𝑈 − 𝑉 ‖𝐹 for all unitaries 𝑈, 𝑉 .

Lemma D.3 (Random unitaries approximately form Haar measure). Given 𝑘 unitaries 𝑈1, . . . , 𝑈𝑘
that forms a universal set of unitaries. For any 𝜖 > 0 and any real-valued Lipschitz function 𝜑 over
the special unitary group, there exists 𝐿 > 0, such that ∀ℓ ≥ 𝐿,⃒⃒⃒⃒

⃒⃒ 1𝑘ℓ
𝑘∑︁

𝑖1=1

. . .

𝑘∑︁
𝑖ℓ=1

𝜑(𝑈𝑖1 . . . 𝑈𝑖ℓ)−
∫︁
𝑑𝜇Haar(𝑈)𝜑(𝑈)

⃒⃒⃒⃒
⃒⃒ < 𝜖, (D1)

where 𝜇Haar is the Haar measure (uniform distribution) over the special unitary group.

We prove Lemma D.3 using a theorem given in [47], which is a corollary of a spectral gap theo-
rem regarding semi-simple compact connected Lie group. Before stating the theorem, we give a few
definitions. Consider a semi-simple compact connected Lie group 𝐺 endowed with the bi-invariant
Riemannian metric. The bi-invariant Riemannian metric gives a distance 𝑑(𝑔, ℎ),∀𝑔, ℎ ∈ 𝐺. We define
Lip(𝐺) to be the set of functions {𝜑} : 𝐺→ R such that ∀𝜑 ∈ Lip(𝐺), sup𝑔 ̸=ℎ∈𝐺

|𝜑(𝑔)−𝜑(ℎ)|
𝑑(𝑔,ℎ) <∞. For

𝜑 ∈ Lip(𝐺), we consider ‖𝜑‖Lip = sup𝑔 ̸=ℎ∈𝐺
|𝜑(𝑔)−𝜑(ℎ)|
𝑑(𝑔,ℎ) . We also define 𝜇Haar to be the Haar measure

over 𝐺. The root second moment of a function 𝜑 : 𝐺 → R is given by ‖𝜑‖2 =
√︁∫︀
|𝜑(𝑥)|2𝑑𝜇Haar(𝑥).

For a probability measure 𝜇, consider 𝜇̃ to be the probability measure such that∫︁
𝑓(𝑥)𝑑𝜇̃(𝑥) =

∫︁
𝑓(𝑥−1)𝑑𝜇(𝑥) (D2)

for all continuous function 𝑓 . One can think of 𝜇̃ as the probability distribution over the inverse
of the probability measure 𝜇. For example, a uniform distribution over 𝑈1, . . . , 𝑈𝑘 yields a uniform
distribution over 𝑈−1

1 , . . . , 𝑈−1
𝑘 . Consider the convolution between two probability measure 𝜇 and 𝜈

to be a probability measure,

(𝜇 * 𝜈)(𝑔) =
∑︁
ℎ∈𝐺

𝜇(𝑔ℎ−1)𝜈(ℎ). (D3)

One can interpret 𝜇 * 𝜈 as the probability distribution of ℎℓ when we sample ℎ according to 𝜇 and ℓ
according to 𝜈. For example, a convolution of the uniform distribution over 𝑈1, . . . , 𝑈𝑘 with itself would
be a uniform distribution over 𝑈𝑖𝑈𝑗 ,∀𝑖, 𝑗 = 1, . . . , 𝑘. Also, for a probability measure 𝜇, we consider
the support of 𝜇, denoted as supp(𝜇), to be the intersection of every set 𝐴 such that 𝜇(𝐴𝑐) = 0.

Theorem D.4 (Corollary 7 in [47]). Let 𝐺 be a semi-simple compact connected Lie group endowed
with the bi-invariant Riemannian metric, and 𝜇 be a probability measure on 𝐺. If supp(𝜇̃*𝜇) generates
a dense subgroup in 𝐺, then ∀𝜓𝐴 ∈ Lip(𝐺) with ‖𝜓𝐴‖2 = 1 and

∫︀
𝜓𝐴(𝑥)𝑑𝜇Haar(𝑥) = 0, we have

‖𝜓𝐵‖2 < 1− 𝑐

log𝐴(‖𝜓𝐴‖Lip + 2)
, (D4)

where 𝜓𝐵(𝑔) =
∫︀
𝜓𝐴(ℎ

−1𝑔)𝑑𝜇(ℎ), 𝐴 ≤ 2 depends on 𝐺, and 𝑐 > 0 depends only on 𝜇.
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We are now ready to prove Lemma D.3. We apply Theorem D.4 by considering 𝐺 to be the special
unitary group with a representation in the vector space of matrices, and consider the bi-invariant
Riemannian metric to be the Euclidean metric in the matrix space. The distance 𝑑(𝑈, 𝑉 ) on 𝐺 is
the the length of the shortest path from 𝑈 to 𝑉 on the special unitary group. Because we consider a
constant dimensional special unitary group, we have

‖𝑈 − 𝑉 ‖𝐹 ≤ 𝑑(𝑈, 𝑉 ) ≤ 𝐶 ‖𝑈 − 𝑉 ‖𝐹 , (D5)

for a constant 𝐶 ≥ 1, where ‖𝑋‖𝐹 =
√︀
tr(𝑋†𝑋). Hence, any real-valued function 𝜑 satisfying

|𝜑(𝑈) − 𝜑(𝑉 )| ≤ ‖𝑈 − 𝑉 ‖𝐹 for all unitaries 𝑈, 𝑉 is in Lip(𝐺) with the Lipschitz norm ‖𝜑‖Lip ≤ 1.
Because 𝜑 is Lipschitz continuous, ‖𝜑‖2 <∞.

Proof for Lemma D.3. For the edge case where 𝜑 is a constant function, the lemma trivially holds. Let
𝜇 be the uniform distribution over 𝑈−1

1 , . . . , 𝑈−1
𝑘 . The probability distribution 𝜇̃ over the inverse of 𝜇 is

the uniform distribution over 𝑈1, . . . , 𝑈𝑘. 𝜇̃*𝜇 is the uniform distribution over 𝑈𝑖𝑈−1
𝑗 ,∀𝑖, 𝑗 = 1, . . . , 𝑘,

and supp(𝜇̃ * 𝜇) is {𝑈𝑖𝑈−1
𝑗 ,∀𝑖, 𝑗 = 1, . . . , 𝑘}, which generates a dense subgroup of the special unitary

group. Because 𝜑 is not a constant function, we can let 𝜓1 be

𝜓1(𝑔) =
𝜑(𝑔)−

∫︀
𝜑(𝑈)𝑑𝜇Haar(𝑈)⃦⃦

𝜑−
∫︀
𝜑(𝑈)𝑑𝜇Haar(𝑈)

⃦⃦
2

, ∀𝑔 ∈ 𝐺, (D6)

which satisfies ‖𝜓1‖2 = 1,
∫︀
𝜓1(𝑥)𝑑𝜇Haar(𝑥) = 0, and

‖𝜓1‖Lip ≤
⃦⃦⃦⃦
𝜑−

∫︁
𝜑(𝑈)𝑑𝜇Haar(𝑈)

⃦⃦⃦⃦
2

‖𝜑‖Lip ≤
⃦⃦⃦⃦
𝜑−

∫︁
𝜑(𝑈)𝑑𝜇Haar(𝑈)

⃦⃦⃦⃦
2

. (D7)

For any ℓ > 1, we define

𝜓ℓ(𝑔) =
1
𝑘ℓ

∑︀𝑘
𝑖1=1 . . .

∑︀𝑘
𝑖ℓ=1 𝜑(𝑈𝑖1 . . . 𝑈𝑖ℓ𝑔)−

∫︀
𝜑𝑑𝜇Haar⃦⃦

𝜑−
∫︀
𝜑(𝑈)𝑑𝜇Haar

⃦⃦
2

, ∀𝑔 ∈ 𝐺, (D8)

which satisfies
∫︀
𝜓ℓ(𝑥)𝑑𝜇Haar(𝑥) = 0 and

|𝜓ℓ(𝑔1)− 𝜓ℓ(𝑔2)| ≤
∫︁ ⃒⃒

𝜓ℓ−1(ℎ
−1𝑔1)− 𝜓ℓ−1(ℎ

−1𝑔2)
⃒⃒
𝑑𝜇(ℎ) (D9)

≤ ‖𝜓ℓ−1‖Lip
∫︁
𝑑(ℎ−1𝑔1, ℎ

−1𝑔2)𝑑𝜇(ℎ) ≤ ‖𝜓ℓ−1‖Lip 𝑑(𝑔1, 𝑔2). (D10)

Hence, ‖𝜓ℓ‖Lip ≤ ‖𝜓ℓ−1‖Lip ≤ ‖𝜓1‖Lip for any ℓ > 1.
We can apply Theorem D.4 with the probability measure 𝜇 defined above, 𝜓𝐴 = 𝜓ℓ−1/ ‖𝜓ℓ−1‖2,

and 𝜓𝐵 = 𝜓ℓ/ ‖𝜓ℓ−1‖2 to obtain

‖𝜓ℓ‖2 ≤
(︃
1− 𝑐

log𝐴(‖𝜓ℓ−1‖Lip / ‖𝜓ℓ−1‖2 + 2)

)︃
‖𝜓ℓ−1‖2 (D11)

≤
(︃
1− 𝑐

log𝐴(‖𝜓1‖Lip / ‖𝜓ℓ−1‖2 + 2)

)︃
‖𝜓ℓ−1‖2 . (D12)

The second inequality follows from ‖𝜓ℓ‖Lip ≤ ‖𝜓1‖Lip. By solving the above recursive relation, given
any 𝜖 > 0, there exists a large enough 𝐿 such that

‖𝜓ℓ‖2 ≤ 𝜖, ∀ℓ ≥ 𝐿. (D13)

From the definition of 𝜓ℓ and the fact that 𝜑 is Lipschitz-continuous over the special unitary group,
∀𝜖 > 0, there exists 𝐿 > 0, such that ∀ℓ ≥ 𝐿, we have⃒⃒⃒⃒

⃒⃒ 1𝑘ℓ
𝑘∑︁

𝑖1=1

. . .

𝑘∑︁
𝑖ℓ=1

𝜑(𝑈𝑖1 . . . 𝑈𝑖ℓ𝑔)−
∫︁
𝜑𝑑𝜇Haar

⃒⃒⃒⃒
⃒⃒ ≤ 𝜖, ∀𝑔 ∈ 𝐺. (D14)

By setting 𝑔 = 𝐼, we conclude the proof of Lemma D.3.
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D.2. The precision parameter

Consider the precision parameter 𝜂 to be a fixed number at the start of the learning algorithm.
Each subsection below corresponds to a set of subroutines in the learning algorithm that depends on
𝜂. After completion of all subroutines, the algorithm restarts with 𝜂 ← 𝜂/2.

D.3. Testing identity and unitarity

We first present the subroutine for finding all actions 𝑦1, . . . , 𝑦𝑘′ that corresponds to unitary trans-
formations, which is presented in the following lemma.

Lemma D.5 (Unitary identification). For a sufficiently small 𝜂, there is a subroutine that returns
𝑦1, . . . , 𝑦𝑘′ such that ℰ𝑦1 , . . . , ℰ𝑦𝑘′ are all the unitary transformations in {ℰ𝑦}𝑦∈𝒴 .

Proof. Consider an arbitrary norm ‖·‖ over the space of maps over quantum states. Assume that we
have a subroutine for estimating how close a composition of CPTP maps ℰ𝑦′1 ∘ . . .∘ℰ𝑦′ℓ is to an identity
under the norm ‖·‖. The subroutine will be presented in Lemma D.6. Recall that in the finite set 𝒴,
there are some CPTP maps ℰ𝑦1 , . . . , ℰ𝑦𝑘 that correspond to unitary transformations. We define

𝒴unitary =
{︁
ℰ†𝑦ℰ𝑦 = 𝐼|∀𝑦 ∈ 𝒴

}︁
. (D15)

We now present a subroutine that returns 𝒴unitary. The proof of this lemma relies on a basic geometric
fact about unitary: the only CPTP maps with some CPTP maps as their inverse are unitaries.

For each 𝑦 ∈ 𝒴, we consider composing ℰ𝑦 with ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ−1
for 𝑦′1, . . . , 𝑦′ℓ−1 ∈ 𝒴 and ℓ ≤ 1/𝜂.

The subroutine returns all actions 𝑦 ∈ 𝒴 such that

min
𝑦′1,...,𝑦

′
ℓ−1

⃦⃦⃦
ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ−1

∘ ℰ𝑦 − 𝐼
⃦⃦⃦
≤ 𝜂. (D16)

If ℰ𝑦 is a unitary transformation, we can find some 𝑦′1, . . . , 𝑦
′
ℓ−1 such that ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ−1

∘ ℰ𝑦 is
arbitrarily close to the identity under ‖·‖ as 𝜂 goes to zero. If ℰ𝑦 is not a unitary transformation, then
for all 𝑦′1, . . . , 𝑦′ℓ−1 and 𝜂 > 0, there is a lower bound to how close ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ−1

∘ ℰ𝑦 could be to
the identity under ‖·‖. As a result, when 𝜂 becomes small enough, the set of actions returned by the
learning algorithm will be equal to 𝒴unitary.

Lemma D.6 (Identity testing). For a sufficiently small 𝜂 and any 𝜖 > 0, there exists a norm ‖·‖
over the space of maps over quantum states and a subroutine that takes in 𝑦′1, . . . , 𝑦

′
ℓ and returns an

estimate for ⃦⃦⃦
ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ − 𝐼

⃦⃦⃦
(D17)

up to an additive error 𝜖 with high probability.

Proof. The central property is that an identity map ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ satisfies

tr(𝑀𝑧𝑏

(︁
(ℰ𝑦2𝑘 ∘ . . . ∘ ℰ𝑦𝑘+1

) ∘ (ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ) ∘ (ℰ𝑦𝑘 ∘ . . . ∘ ℰ𝑦1)
)︁
(𝜌𝑥)) (D18)

= tr(𝑀𝑧𝑏

(︀
(ℰ𝑦2𝑘 ∘ . . . ∘ ℰ𝑦𝑘+1

) ∘ (ℰ𝑦𝑘 ∘ . . . ∘ ℰ𝑦1)
)︀
(𝜌𝑥)), (D19)

for all 𝑥 ∈ 𝒳 , 𝑦1, . . . 𝑦2𝑘 ∈ 𝒴 ∪{NULL}, 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ. We denote the first term as ℎ(𝑥, 𝑦1, . . . , 𝑦2𝑘, 𝑧, 𝑏)
and the second term as ℎ0(𝑥, 𝑦1, . . . , 𝑦2𝑘, 𝑧, 𝑏). Here, the action 𝑦 = NULL corresponds to not imple-
menting the action in the experiment defined in Def. A.2. The learning algorithm considers all possible
composition with 2𝑘 = ⌈1/𝜂⌉, where 𝜂 is the precision parameter.

The learning algorithm can obtain estimates for ℎ(𝑥, 𝑦1, . . . , 𝑦2𝑘, 𝑧, 𝑏) and ℎ0(𝑥, 𝑦1, . . . , 𝑦2𝑘, 𝑧, 𝑏) by
running the corresponding experiments with 𝐾 repetitions. By Hoeffding’s inequality, with 𝐾 =
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𝒪(log(1/𝛿)/𝜖2), the algorithm can estimate ℎ(𝑥, 𝑦1, . . . , 𝑦2𝑘, 𝑧, 𝑏) and ℎ0(𝑥, 𝑦1, . . . , 𝑦2𝑘, 𝑧, 𝑏) to 𝜖-error
with probability at least 1− 𝛿. We consider 𝐾 to be large enough such that the algorithm outputs an
estimate for the quantity 𝐴 defined as

𝐴 = max
𝑥∈𝒳 ,𝑦1,...𝑦2𝑘∈𝒴∪{NULL},𝑧∈𝒵,𝑏∈ℬ

|ℎ(𝑥, 𝑦1, . . . , 𝑦2𝑘, 𝑧, 𝑏)− ℎ0(𝑥, 𝑦1, . . . , 𝑦2𝑘, 𝑧, 𝑏)| (D20)

= max
𝑥∈𝒳 ,𝑦1,...𝑦2𝑘∈𝒴∪{NULL},𝑧∈𝒵,𝑏∈ℬ

(D21)⃒⃒⃒
tr(𝑀𝑧𝑏

(︁
(ℰ𝑦2𝑘 ∘ . . . ∘ ℰ𝑦𝑘+1

) ∘ (ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ − 𝐼) ∘ (ℰ𝑦𝑘 ∘ . . . ∘ ℰ𝑦1)
)︁
(𝜌𝑥))

⃒⃒⃒
. (D22)

up to 𝜖-error with high probability. We can interpret 𝐴 as a norm ‖·‖ over the space of maps over
quantum states when 𝜂 is sufficiently small,

𝐴 =
⃦⃦⃦
ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ − 𝐼

⃦⃦⃦
. (D23)

Positive definiteness follows from the fact that 𝐴 is zero when ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ is an identity; and 𝐴
must be greater than zero for a sufficiently small 𝜂 if ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ is not equal to an identity from
Lemma D.7. The two other conditions, absolute homogeneity and subadditivity, both follow from the
definition of 𝐴 in Eq. (D22).

Lemma D.7 (Characterization of 𝐴). For a sufficiently small 𝜂, we have

𝐴 = max
𝑥∈𝒳 ,𝑦1,...𝑦2𝑘∈𝒴∪{NULL},𝑧∈𝒵,𝑏∈ℬ

(D24)⃒⃒⃒
tr(𝑀𝑧𝑏

(︁
(ℰ𝑦2𝑘 ∘ . . . ∘ ℰ𝑦𝑘+1

) ∘ (ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ − 𝐼) ∘ (ℰ𝑦𝑘 ∘ . . . ∘ ℰ𝑦1)
)︁
(𝜌𝑥))

⃒⃒⃒
> 0 (D25)

if ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ is not equal to an identity.

Proof. This claim follows from the assumption that there exists a universal set of unitaries and a pure
state in the action space. Hence, we can generate a pure state (ℰ𝑦𝑘 ∘ . . . ∘ ℰ𝑦1)) (𝜌𝑥) such that

(ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ)((ℰ𝑦𝑘 ∘ . . . ∘ ℰ𝑦1)(𝜌𝑥)) ̸= (ℰ𝑦𝑘 ∘ . . . ∘ ℰ𝑦1)(𝜌𝑥). (D26)

From the assumption, we can also find a POVMℳ𝑧 such that one of the POVM element 𝑀𝑧𝑏 is not
proportional to the identity. There always exists a unitary 𝑈1 that diagonalizes the Hermitian matrix

𝐷 ≡ (ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ)((ℰ𝑦𝑘 ∘ . . . ∘ ℰ𝑦1)(𝜌𝑥))− (ℰ𝑦𝑘 ∘ . . . ∘ ℰ𝑦1)(𝜌𝑥), (D27)

such that the eigenvalues {𝜆𝐷𝑖 } are sorted from a greater value to a smaller value. Also, there exists
a unitary 𝑈2 that diagonalizes 𝑀𝑧𝑏 with eigenvalues {𝜆𝑀𝑧𝑏

𝑖 } sorted from large to small. We have

tr(𝑈2𝑀𝑧𝑏𝑈
†
2𝑈1𝐷𝑈

†
1) =

𝑑∑︁
𝑖=1

𝜆𝑀𝑧𝑏
𝑖 𝜆𝐷𝑖 . (D28)

Because 𝐷 ̸= 0 and tr(𝐷) = 0, the largest eigenvalue 𝜆𝐷1 > 0, the smallest eigenvalue 𝜆𝐷𝑑 < 0, and∑︀𝑑
𝑖=1 𝜆

𝐷
𝑖 = 0. We can thus find an index 𝑘 ≥ 2 such that 𝜆𝐷𝑖 > 0, ∀𝑖 < 𝑘 and 𝜆𝐷𝑖 ≤ 0,∀𝑖 ≥ 𝑘. Since

𝑀𝑧𝑏 ⪰ 0 is not proportional to identity, we have the largest eigenvalue 𝜆𝑀𝑧𝑏
1 > 𝜆𝑀𝑧𝑏

𝑑 ≥ 0.

𝑑∑︁
𝑖=1

𝜆𝑀𝑧𝑏
𝑖 𝜆𝐷𝑖 =

𝑑∑︁
𝑖=1

(𝜆𝑀𝑧𝑏
𝑖 − 𝜆𝑀𝑧𝑏

𝑘 )𝜆𝐷𝑖 > 0. (D29)

When the precision parameter 𝜂 is smaller enough, (ℰ𝑦2𝑘 ∘ . . . ∘ ℰ𝑦𝑘+1
) can approximate any unitary

with a properly chosen 𝑦𝑘+1, . . . , 𝑦2𝑘 because there exists a universal set of unitaries by choosing
the proper actions. Hence, there exists 𝑥 ∈ 𝒳 , 𝑦1, . . . 𝑦2𝑘 ∈ 𝒴 ∪ {NULL}, 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ such that
ℎ(𝑥, 𝑦1, . . . , 𝑦2𝑘, 𝑧, 𝑏) > ℎ0(𝑥, 𝑦1, . . . , 𝑦2𝑘, 𝑧, 𝑏). Together, we see that 𝐴 must be greater than zero if
ℰ𝑦′1 ∘ . . . ∘ ℰ𝑦′ℓ is not equal to an identity.
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D.4. Estimating state overlaps

The learning algorithm has now identified a set {𝑦1, . . . , 𝑦𝑘′} of unitary transformation. The al-
gorithm randomly composes the identified unitary transformations ℰ𝑦1 , . . . , ℰ𝑦𝑘′ . In particular, the
algorithm randomly selects 1/𝜂 unitaries with replacement and compose them to form an approximate
Haar random unitary. Using Lemma D.3, as 𝜂 becomes smaller, we can obtain a better approximation
to the Haar random unitary. The learning algorithm has no additional information other than the
randomly composed operation is approximately Haar random.

The ability to generate Haar random unitary enables the learning algorithm to estimate state
overlaps. Given two states 𝜌1, 𝜌2 which can be obtained by composing some initial states and CPTP
maps, we have a randomized measurement procedure that guarantees the following.

Lemma D.8 (State overlap estimation with a fixed POVM). Given two states 𝜌1, 𝜌2, 𝜖 > 0, 𝑧 ∈
𝒵, 𝑏 ∈ ℬ, and a sufficiently small 𝜂 > 0, there is a subroutine that estimates

𝑓𝑀𝑧𝑏
(𝜌1, 𝜌2) = 𝛼𝑀𝑧𝑏

tr(𝜌1𝜌2) + 𝛽𝑀𝑧𝑏
(D30)

up to 𝜖 additive error, where 𝛼𝑀𝑧𝑏
, 𝛽𝑀𝑧𝑏

depends on POVM element 𝑀𝑧𝑏.

Proof. Consider 𝑅 repetitions. For repetition 𝑟 ∈ {1, . . . , 𝑅}, the subroutine performs:

1. Randomly compose 1/𝜂 actions in 𝒴unitary to generate a random CPTP map ℰ .

2. Measure the POVMℳ𝑧 on ℰ(𝜌1) and check if the measurement outcome is 𝑏.

3. Record a binary variable 𝐶𝑟 ∈ {0, 1} indicating if the outcome is 𝑏.

4. Measure the POVMℳ𝑧 on ℰ(𝜌2) and check if the measurement outcome is 𝑏.

5. Record a binary variable 𝐷𝑟 ∈ {0, 1} indicating if the outcome is 𝑏.

From Lemma D.9, we can show that 𝑋̂ = 1
𝑅

∑︀𝑅
𝑟=1𝐶𝑟𝐷𝑟 is an accurate estimate for

𝑓𝑀𝑧𝑏
(𝜌1, 𝜌2) =

1

𝑑2 − 1

(︀
(tr(𝑀𝑧𝑏)

2 − tr(𝑀2
𝑧𝑏)/𝑑) + tr(𝜌1𝜌2)(tr(𝑀

2
𝑧𝑏)− tr(𝑀𝑧𝑏)

2/𝑑)
)︀
, (D31)

= 𝛼𝑀𝑧𝑏
tr(𝜌1𝜌2) + 𝛽𝑀𝑧𝑏

, (D32)

up to 𝜖 error when 𝜂 is sufficiently small. Hence this lemma can be established.

Lemma D.9 (Characterization of 𝑋̂). Given two states 𝜌1, 𝜌2, 𝜖 > 0, 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ, a sufficiently
large 𝑅 and a sufficiently small 𝜂 > 0, we have⃒⃒⃒

𝑋̂ − 𝑓𝑀𝑧𝑏
(𝜌1, 𝜌2)

⃒⃒⃒
< 𝜖 (D33)

with high probability.

Proof. The expectation value of 𝑋̂ = 1
𝑅

∑︀𝑅
𝑟=1𝐶𝑟𝐷𝑟 is equal to

E

[︃
1

𝑅

𝑅∑︁
𝑟=1

𝐶𝑟𝐷𝑟

]︃
= E

ℰ
tr(𝑀𝑧𝑏ℰ(𝜌1)) tr(𝑀𝑧𝑏ℰ(𝜌2)) (D34)

≈
∫︁
𝑈
𝑑𝜇Haar(𝑈) tr(𝑀𝑧𝑏𝑈𝜌1𝑈

†) tr(𝑀𝑧𝑏𝑈𝜌2𝑈
†) (D35)

=

∫︁
𝑈
𝑑𝜇Haar(𝑈) tr((𝑀𝑧𝑏 ⊗𝑀𝑧𝑏)(𝑈 ⊗ 𝑈)(𝜌1 ⊗ 𝜌2)(𝑈 † ⊗ 𝑈 †)) (D36)

=
1

𝑑2 − 1

(︀
(tr(𝑀𝑧𝑏)

2 − tr(𝑀2
𝑧𝑏)/𝑑) + tr(𝜌1𝜌2)(tr(𝑀

2
𝑧𝑏)− tr(𝑀𝑧𝑏)

2/𝑑)
)︀
. (D37)
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Eq. (D35) is the consequence of the fact that a random composition of universal set of unitaries
approximately forms a Haar random unitary. In particular, using the Lipschitz continuity of the
function 𝜑(𝑈) ≡ tr(𝑀𝑧𝑏𝑈𝜌1𝑈

†) tr(𝑀𝑧𝑏𝑈𝜌2𝑈
†), Lemma D.3 shows that the approximation error can be

made arbitrarily small as the number of composed unitary becomes sufficiently large (i.e., 𝜂 sufficiently
small). Because 𝐶𝑟𝐷𝑟 is a random variable bounded by one, using Hoeffding’s inequality, we can choose
𝑅 = 𝒪(log(1/𝛿))/𝜖2, such that 1

𝑅

∑︀𝑅
𝑟=1𝐶𝑟𝐷𝑟 equals to Eℰ tr(𝑀𝑧𝑏ℰ(𝜌1)) tr(𝑀𝑧𝑏ℰ(𝜌2)) up to error 𝜖/2

with probability at least 1−𝛿. Eq. (D37), on the other hand, uses the second moment Haar integration
formula over special unitary group. In particular, for SU(𝑑) and 𝑋 ∈ C(𝑑×𝑑)×(𝑑×𝑑), we have∫︁

𝑈
𝑑𝜇Haar(𝑈)(𝑈 ⊗ 𝑈)𝑋(𝑈 † ⊗ 𝑈 †) =

1

𝑑2 − 1

(︂
𝐼 tr(𝑋) + 𝑆 tr(𝑆𝑋)− 1

𝑑
𝑆 tr(𝑋)− 1

𝑑
𝐼 tr(𝑆𝑋)

)︂
, (D38)

where 𝑆 is the swap operator over the tensor product space. Hence, when the precision parameter 𝜂
is small enough and the number 𝑅 of randomized experiments is large enough, 𝑋̂ = 1

𝑅

∑︀𝑅
𝑟=1𝐶𝑟𝐷𝑟 is

an accurate estimate for

𝑓𝑀𝑧𝑏
(𝜌1, 𝜌2) =

1

𝑑2 − 1

(︀
(tr(𝑀𝑧𝑏)

2 − tr(𝑀2
𝑧𝑏)/𝑑) + tr(𝜌1𝜌2)(tr(𝑀

2
𝑧𝑏)− tr(𝑀𝑧𝑏)

2/𝑑)
)︀
, (D39)

with an additive error at most 𝜖. This establishes the claim.

We are now ready to combine the two lemmas above to establish the main result of this subsection.

Lemma D.10 (State overlap estimation). Given two states 𝜌1, 𝜌2, 𝜖 > 0, a sufficiently small 𝜂 > 0,
and the existence of a non-identity 𝑀𝑧𝑏 for some 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ. There is a subroutine that estimates
tr(𝜌1𝜌2) up to 𝜖 additive error.

Proof. The learning algorithm utilizes the procedure in Lemma D.8 to build the subroutine achieving
the claim of this lemma. Using the fact that for a 𝑑-dimensional vector 𝑥, 𝑑 ‖𝑥‖22 ≥ ‖𝑥‖21, we have

tr(𝑀2
𝑧𝑏)− tr(𝑀𝑧𝑏)

2/𝑑 ≥ 0. (D40)

Furthermore, equality holds in Eq. (D40) if and only if all eigenvalues of 𝑀𝑧𝑏 are equal, which implies
that 𝑀𝑧𝑏 is proportional to identity. If 𝑀𝑧𝑏 is proportional to identity, 𝑓𝑀𝑧𝑏

(𝜌1, 𝜌2) will be a constant
function independent of 𝜌1, 𝜌2. In contrast, if 𝑀𝑧𝑏 is not proportional to identity, then for some
𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴, 𝑓𝑀𝑧𝑏

(𝜌1, 𝜌2) will be distinct between the following two pairs of states,

𝜌1 = 𝜌𝑥, 𝜌2 = ℰ𝑦(𝜌𝑥) and 𝜌1 = 𝜌𝑥, 𝜌2 = 𝜌𝑥. (D41)

In particular, this is true if we choose the 𝑥 such that 𝜌𝑥 is pure and 𝑦 such that ℰ𝑦 is one of the
universal set of unitaries such that ℰ𝑦(𝜌𝑥) ̸= 𝜌𝑥.

From the assumption on the true world model (exists actions corresponding to preparation of a
pure state, a universal set of unitaries, and a POVM element not proportional to identity), there
always exists 𝑧, 𝑏, 𝑥, 𝑦 such that 𝑓𝑀𝑧𝑏

(𝜌1, 𝜌2) is distinct under the two pairs of states in Eq. (D41).
Hence, as 𝜂 goes to zero, if 𝑀𝑧𝑏 is proportional to the identity, then the largest difference for the
estimate of 𝑓𝑀𝑧𝑏

(𝜌1, 𝜌2) maximized over 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 will approach zero. In contrast, if 𝑀𝑧𝑏 is not
proportional to the identity, the largest difference for the estimate of 𝑓𝑀𝑧𝑏

(𝜌1, 𝜌2) maximized over
𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 will be greater than a positive value. Hence, we can consider an algorithm that finds the
pair of 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ that yields the largest difference for the estimate of 𝑓𝑀𝑧𝑏

(𝜌1, 𝜌2) maximized over
𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴. The deduction above guarantees that the algorithm would find a POVM element 𝑀𝑧𝑏

that is not proportional to the identity under a sufficiently small 𝜂.
After finding a pair of 𝑧, 𝑏 such that 𝑀𝑧𝑏 is not proportional to identity, we can now describe the

procedure that estimates tr(𝜌1𝜌2) for any state 𝜌1, 𝜌2. Recall from Lemma D.8 and Eq. D40 that

𝑓𝑀𝑧𝑏
(𝜌1, 𝜌2) = 𝛼𝑀𝑧𝑏

tr(𝜌1𝜌2) + 𝛽𝑀𝑧𝑏
, (D42)

where 𝛼𝑀𝑧𝑏
> 0. Because 𝛼𝑀𝑧𝑏

> 0, when 𝜌1 = 𝜌2, we can see that 𝑓𝑀𝑧𝑏
(𝜌1, 𝜌1) is maximized when 𝜌1

is a pure state. The maximum value of 𝑓𝑀𝑧𝑏
(𝜌1, 𝜌2) is 𝛼𝑀𝑧𝑏

+ 𝛽𝑀𝑧𝑏
, and the minimum value is 𝛽𝑀𝑧𝑏

.
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If 𝜌1 is not a pure state, we can see that 𝑓𝑀𝑧𝑏
(𝜌1, 𝜌2) < 𝛼𝑀𝑧𝑏

+ 𝛽𝑀𝑧𝑏
. The subroutine would hence go

through all 𝑥 ∈ 𝒳 and find an 𝑥* such that the estimate for 𝑓𝑀𝑧𝑏
(𝜌𝑥, 𝜌𝑥) is maximized. Recall from

the assumption of the true world model, there exists an action 𝑥 that prepares a pure state. The gap
between the finite set of actions that prepare pure states and those that prepare mixed states allows
us to guarantee that the action 𝑥* we found prepares a pure state 𝜌𝑥* when 𝜂 is sufficiently small.
Because 𝜌𝑥* is a pure state, we have tr(𝜌2𝑥*) = 1 and hence from Eq. (D31),

𝑓𝑀𝑧𝑏
(𝜌𝑥* , 𝜌𝑥*) =

1

(𝑑+ 1)𝑑
(tr(𝑀2

𝑧𝑏) + tr(𝑀𝑧𝑏)
2). (D43)

The learning algorithm could obtain an estimate for The learning algorithm only has to determine
tr(𝑀𝑧𝑏) in order to determine tr(𝑀2

𝑧𝑏), which in turn fully specify the two values 𝛼𝑀𝑧𝑏
and 𝛽𝑀𝑧𝑏

.
An estimation for tr(𝑀𝑧𝑏) can be obtained by reusing the randomized measurement data from the

procedure described in Lemma D.8. We can show that 𝑌 = 1
𝑅

∑︀𝑅
𝑟=1𝐶𝑟 is an accurate estimate for

tr(𝑀𝑧𝑏)/𝑑. Using the following first moment Haar integration formula over special unitary group,∫︁
𝑈
𝑑𝜇Haar 𝑈𝑋𝑈

† = tr(𝑋)𝐼/𝑑, (D44)

and the standard concentration inequality, we have 1
𝑅

∑︀𝑅
𝑟=1𝐶𝑟 gives an estimate for tr(𝑀𝑧𝑏)

𝑑 up to an
error 𝜖 for sufficiently large 𝑅 and sufficiently small 𝜂. Along with an estimate for Eq. (D43), the
learning algorithm can determine both tr(𝑀2

𝑧𝑏) and tr(𝑀𝑧𝑏)
2, and hence 𝛼𝑀𝑧𝑏

and 𝛽𝑀𝑧𝑏
. Together,

the learning algorithm can produce an accurate estimate for quantum state overlap tr(𝜌1𝜌2) from an
estimate for 𝑓𝑀𝑧𝑏

(𝜌1, 𝜌2) given in Lemma D.8 and the estimates for 𝛼𝑀𝑧𝑏
and 𝛽𝑀𝑧𝑏

. This concludes
the proof of this lemma.

D.5. Learning descriptions of a special set of states

At this point, the algorithm still has not learned any description for any of the actions. However,
the algorithm has identified several important actions. The algorithm has found 𝑥* ∈ 𝒳 where
𝜌𝑥* is a pure state. The algorithm has also discovered 𝒴unitary = {𝑦1, . . . , 𝑦𝑘} ∈ 𝒴 that forms a
universal set of unitaries, which we will now denote as 𝑈𝑦1 , . . . , 𝑈𝑦𝑘 ∈ SU(𝑑). Furthermore, the
algorithm has now obtained a subroutine that provides accurate estimate for state overlap tr(𝜌1𝜌2).
The learning algorithm can now utilize these tools to construct the entire structure of quantum state
space. More precisely, the algorithm will find a special set of pure quantum states {𝜌𝑖} that satisfies
a certain geometry. The algorithm generates the special set of pure states by applying compositions
of the unitaries 𝑈𝑦, ∀𝑦 ∈ 𝒴unitary onto the pure state 𝜌𝑥* . We will limit the algorithm to consider a
composition of length at most 1/𝜂. This means that the algorithm will only find a collection of states
that satisfies the geometry approximately. However, an approximate geometry with small error implies
that the learned descriptions will only be subject to a small error. As 𝜂 goes to zero, the geometry
and the learned description will become accurate to an arbitrarily small error. The geometry enables
us to provide the intrinsic physical descriptions for states in the special set. Using properties of the
geometry, we can guarantee that the description for the special set of pure states is accurate up to the
equivalence relation – a global unitary or anti-unitary transformation – characterized by Theorem A.8.
The construction of the special set of pure states is related to the proof of Wigner’s theorem.

We denote the special collection of pure states as 𝜌(basis)𝑖 , ∀𝑖 ∈ {1, . . . , 𝑑}, 𝜌(real)𝑖𝑗 ,∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑},
𝜌
(imag)
𝑖𝑗 , ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, 𝜌(triplet)𝑖𝑗 ,∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, 𝜌(triplet,12)𝑗 , ∀𝑗 ∈ {3, . . . , 𝑑} and 𝜌(triplet,i)𝑖𝑗 ,∀𝑖 ̸=
𝑗 ∈ {2, . . . , 𝑑}. The geometry of the states is given by the following equations.

tr(𝜌
(basis)
𝑖 𝜌

(basis)
𝑗 ) = 𝛿𝑖𝑗 , ∀𝑖, 𝑗 ∈ {1, . . . , 𝑑}, (Fix the basis) (D45)

tr(𝜌
(basis)
𝑖 𝜌

(real)
𝑖𝑗 ) =

1

2
, ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(real)𝑖𝑗 ) (D46)

tr(𝜌
(basis)
𝑗 𝜌

(real)
𝑖𝑗 ) =

1

2
, ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(real)𝑖𝑗 ) (D47)
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tr(𝜌
(basis)
1 𝜌

(triplet)
𝑖𝑗 ) =

1

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(triplet)𝑖𝑗 ) (D48)

tr(𝜌
(basis)
𝑖 𝜌

(triplet)
𝑖𝑗 ) =

1

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(triplet)𝑖𝑗 ) (D49)

tr(𝜌
(basis)
𝑗 𝜌

(triplet)
𝑖𝑗 ) =

1

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(triplet)𝑖𝑗 ) (D50)

tr(𝜌
(real)
1𝑖 𝜌

(triplet)
𝑖𝑗 ) =

2

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Transfer relative phase +1, a) (D51)

tr(𝜌real1𝑗 𝜌
(triplet)
𝑖𝑗 ) =

2

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Transfer relative phase +1, b) (D52)

tr(𝜌
(real)
𝑖𝑗 𝜌

(triplet)
𝑖𝑗 ) =

2

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Transfer relative phase +1, c) (D53)

tr(𝜌
(basis)
𝑖 𝜌

(imag)
𝑖𝑗 ) =

1

2
, ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(imag)

𝑖𝑗 ) (D54)

tr(𝜌basis𝑗 𝜌
(imag)
𝑖𝑗 ) =

1

2
, ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(imag)

𝑖𝑗 ) (D55)

tr(𝜌real𝑖𝑗 𝜌
(imag)
𝑖𝑗 ) =

1

2
, ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, (Partially fix the phase for 𝜌(imag)

𝑖𝑗 ) (D56)

tr(𝜌
(basis)
1 𝜌

(triplet,12)
𝑗 ) =

1

3
, ∀𝑗 ∈ {3, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(triplet,12)𝑗 ) (D57)

tr(𝜌
(basis)
2 𝜌

(triplet,12)
𝑗 ) =

1

3
, ∀𝑗 ∈ {3, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(triplet,12)𝑗 ) (D58)

tr(𝜌
(basis)
𝑗 𝜌

(triplet,12)
𝑗 ) =

1

3
, ∀𝑗 ∈ {3, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(triplet,12)𝑗 ) (D59)

tr(𝜌
(real)
2𝑗 𝜌

(triplet,12)
𝑗 ) =

2

3
, ∀𝑗 ∈ {3, . . . , 𝑑}, (Transfer relative phase +1, a’) (D60)

tr(𝜌
(imag)
12 𝜌

(triplet,12)
𝑗 ) =

2

3
, ∀𝑗 ∈ {3, . . . , 𝑑}, (Transfer relative phase +i, b’) (D61)

tr(𝜌
(imag)
1𝑗 𝜌

(triplet,12)
𝑗 ) =

2

3
, ∀𝑗 ∈ {3, . . . , 𝑑}, (Transfer relative phase +i, c’) (D62)

tr(𝜌
(basis)
1 𝜌

(triplet,i)
𝑖𝑗 ) =

1

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(triplet,i)𝑖𝑗 ) (D63)

tr(𝜌
(basis)
𝑖 𝜌

(triplet,i)
𝑖𝑗 ) =

1

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(triplet,i)𝑖𝑗 ) (D64)

tr(𝜌
(basis)
𝑗 𝜌

(triplet,i)
𝑖𝑗 ) =

1

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Fix absolute amplitude for 𝜌(triplet,i)𝑖𝑗 ) (D65)

tr(𝜌
(real)
1𝑖 𝜌

(triplet,i)
𝑖𝑗 ) =

2

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Transfer relative phase +1, a”) (D66)

tr(𝜌
(imag)
1𝑗 𝜌

(triplet,i)
𝑖𝑗 ) =

2

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Transfer relative phase +i, b”) (D67)

tr(𝜌
(imag)
𝑖𝑗 𝜌

(triplet,i)
𝑖𝑗 ) =

2

3
, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (Transfer relative phase +i, c”). (D68)

We comment on each geometric constraint, so it would be easier to refer to in the following analysis.
The geometry determines the description of the set of states.

Lemma D.11 (Geometry and states). The geometry of the states given in Eq. (D45) to Eq. (D68) is
satisfied if and only if

𝜌
(basis)
𝑖 = 𝑈 |𝑖⟩⟨𝑖|𝑈−1, ∀𝑖 ∈ {1, . . . , 𝑑}, (D69)

𝜌
(real)
𝑖𝑗 =

1

2
𝑈 (|𝑖⟩+ |𝑗⟩) (⟨𝑖|+ ⟨𝑗|)𝑈−1, ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, (D70)

𝜌
(imag)
𝑖𝑗 =

1

2
𝑈 (|𝑖⟩+ i |𝑗⟩) (⟨𝑖| − i ⟨𝑗|)𝑈−1, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (D71)

𝜌
(triplet)
𝑖𝑗 =

1

3
𝑈 (|1⟩+ |𝑖⟩+ |𝑗⟩) (⟨1|+ ⟨𝑖|+ ⟨𝑗|)𝑈−1, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (D72)
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𝜌
(triplet,12)
𝑗 =

1

3
𝑈 (|1⟩+ i |2⟩+ i |𝑗⟩) (⟨1| − i ⟨2| − i ⟨𝑗|)𝑈−1, ∀𝑗 ∈ {3, . . . , 𝑑}, (D73)

𝜌
(triplet,i)
𝑖𝑗 =

1

3
𝑈 (|1⟩+ |𝑖⟩+ i |𝑗⟩) (⟨1|+ ⟨𝑖| − i ⟨𝑗|)𝑈−1, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑} (D74)

for a unitary or anti-unitary transformation 𝑈 .

Proof. One can directly verify that the set of states given in Eq. (D69) to Eq. (D74) satisfies the
geometry given in Eq. (D45) to Eq. (D68). For the other direction, we utilize the following steps. The
basic idea is to use the geometric constraints to gradually determine the descriptions for the states.

1. The constraint (Fix the basis) ensures that there exists a unitary transformation 𝑈 (0) such that

(𝑈 (0))−1𝜌
(basis)
𝑖 (𝑈 (0)) = |𝑖⟩⟨𝑖|, ∀𝑖 ∈ {1, . . . , 𝑑}. (D75)

2. The constraint (Fix absolute amplitude for 𝜌(real)𝑖𝑗 ) ensures that

(𝑈 (0))−1𝜌
(real)
𝑖𝑗 (𝑈 (0)) =

1

2

(︁
|𝑖⟩+ ei𝜑𝑖𝑗 |𝑗⟩

)︁(︁
⟨𝑖|+ e−i𝜑𝑖𝑗 ⟨𝑗|

)︁
,∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑} (D76)

for some unknown phase 𝜑𝑖𝑗 ∈ [0, 2𝜋). Consider 𝑈 (1) = 𝑈 (0)𝐷, where 𝐷 is a diagonal matrix
with 𝐷11 = 1 and 𝐷𝑖𝑖 = ei𝜑1𝑖 ,∀𝑖 ∈ {2, . . . , 𝑑}. We have

(𝑈 (1))−1𝜌
(basis)
𝑖 (𝑈 (1)) = |𝑖⟩⟨𝑖|, ∀𝑖 ∈ {1, . . . , 𝑑}, (D77)

(𝑈 (1))−1𝜌
(real)
1𝑖 (𝑈 (1)) =

1

2
(|1⟩+ |𝑖⟩) (⟨1|+ ⟨𝑖|) , ∀𝑖 ∈ {2, . . . , 𝑑}, (D78)

(𝑈 (1))−1𝜌
(real)
𝑖𝑗 (𝑈 (1)) =

1

2

(︁
|𝑖⟩+ ei𝜑

′
𝑖𝑗 |𝑗⟩

)︁(︁
⟨𝑖|+ e−i𝜑′𝑖𝑗 ⟨𝑗|

)︁
, ∀𝑖 ≥ 2, 𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, (D79)

where 𝜑′𝑖𝑗 ∈ [0, 2𝜋) is some unknown phase.

3. From the constraints (Fix absolute amplitude for 𝜌(triplet)𝑖𝑗 ), (Transfer relative phase +1, a) and
(Transfer relative phase +1, b) and Eq. (D78), we have

(𝑈 (1))−1𝜌
(triplet)
𝑖𝑗 (𝑈 (1)) =

1

3
(|1⟩+ |𝑖⟩+ |𝑗⟩) (⟨1|+ ⟨𝑖|+ ⟨𝑗|) , ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}. (D80)

4. The constraint (Transfer relative phase +1, c), Eq. (D79) and Eq. (D80) ensure that

(𝑈 (1))−1𝜌
(real)
𝑖𝑗 (𝑈 (1)) =

1

2
(|𝑖⟩+ |𝑗⟩) (⟨𝑖|+ ⟨𝑗|) , ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}. (D81)

The state 𝜌(triplet)𝑖𝑗 serves as an intermediate point to transfer relative phases.

5. The constraints (Fix absolute amplitude for 𝜌(imag)
𝑖𝑗 ), (Partially fix the phase for 𝜌(imag)

𝑖𝑗 ), and
Eq. (D81) ensure that

(𝑈 (1))−1𝜌
(imag)
𝑖𝑗 (𝑈 (1)) =

1

2
(|𝑖⟩+ 𝑠𝑖𝑗 i |𝑗⟩) (⟨𝑖| − 𝑠𝑖𝑗 i ⟨𝑗|) , ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, (D82)

where 𝑠𝑖𝑗 = ±1 is an unknown phase. If 𝑠12 = 1, we define 𝑈 (2) = 𝑈 (1). If 𝑠12 = −1, we define
𝑈 (2) = 𝑈 (1)𝐾, where 𝐾 is the complex conjugation operation. We have 𝑈 (2) is either a unitary
or anti-unitary transformation. Using the newly defined 𝑈 (2), we have

(𝑈 (2))−1𝜌
(basis)
𝑖 (𝑈 (2)) = |𝑖⟩⟨𝑖|, ∀𝑖 ∈ {1, . . . , 𝑑}, (D83)

(𝑈 (2))−1𝜌
(real)
𝑖𝑗 (𝑈 (2)) =

1

2
(|𝑖⟩+ |𝑗⟩) (⟨𝑖|+ ⟨𝑗|) , ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, (D84)
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(𝑈 (1))−1𝜌
(triplet)
𝑖𝑗 (𝑈 (1)) =

1

3
(|1⟩+ |𝑖⟩+ |𝑗⟩) (⟨1|+ ⟨𝑖|+ ⟨𝑗|) , ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}, (D85)

(𝑈 (2))−1𝜌
(imag)
12 (𝑈 (2)) =

1

2
(|1⟩+ i |2⟩) (⟨1| − i ⟨2|) , (D86)

(𝑈 (2))−1𝜌
(imag)
𝑖𝑗 (𝑈 (2)) =

1

2

(︀
|𝑖⟩+ 𝑠′𝑖𝑗 i |𝑗⟩

)︀ (︀
⟨𝑖| − 𝑠′𝑖𝑗 i ⟨𝑗|

)︀
, ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, (D87)

for some 𝑠′𝑖𝑗 ∈ {±1}.

6. From (Fix absolute amplitude for 𝜌(triplet,12)𝑗 ), (Transfer relative phase +1, a’), and (Transfer
relative phase +i, b’), we have

(𝑈 (2))−1𝜌
(triplet,12)
𝑗 (𝑈 (2)) =

1

3
(|1⟩+ i |2⟩+ i |𝑗⟩) (⟨1| − i ⟨2| − i ⟨𝑗|) , ∀𝑗 ∈ {3, . . . , 𝑑}. (D88)

7. From (Transfer relative phase +i, c’), we have

(𝑈 (2))−1𝜌
(imag)
1𝑗 (𝑈 (2)) =

1

2
(|1⟩+ i |𝑗⟩) (⟨1| − i ⟨𝑗|) , ∀𝑗 ∈ {2, . . . , 𝑑}, (D89)

Similar to 𝜌(triplet)𝑖𝑗 , the state 𝜌(triplet,12)𝑗 serves as an intermediate point to transfer relative phases.

8. From (Fix absolute amplitude for 𝜌(triplet,i)𝑖𝑗 ), (Transfer relative phase +1, a”), and (Transfer
relative phase +i, b”), we have

(𝑈 (2))−1𝜌
(triplet,i)
𝑖𝑗 (𝑈 (2)) =

1

3
(|1⟩+ |𝑖⟩+ i |𝑗⟩) (⟨1|+ ⟨𝑖| − i ⟨𝑗|) , ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}. (D90)

9. From (Transfer relative phase +i, c”), we have

(𝑈 (2))−1𝜌
(imag)
𝑖𝑗 (𝑈 (2)) =

1

2
(|𝑖⟩+ i |𝑗⟩) (⟨𝑖| − i ⟨𝑗|) , ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}. (D91)

Here, the state 𝜌(triplet,i)𝑖𝑗 is used as an intermediate point to transfer relative phases.

By considering 𝑈 = 𝑈 (2), we have established the claim.

As 𝜂 goes to zero, the learning algorithm can find a set of states that satisfy the geometry up to
an arbitrarily small error. This implies that the description for the states would also be close to the
true one up to an arbitrarily small error as 𝜂 goes to zero. Using this basic, idea, we can see that
Lemma D.11 yields the corollary stated below.

Corollary D.12. Given 𝜖 > 0. For all sufficiently small 𝜂, there exists a unitary or anti-unitary
transformation 𝑈 , such that ⃦⃦⃦

𝜌
(basis)
𝑖 − 𝑈 |𝑖⟩⟨𝑖|𝑈−1

⃦⃦⃦
< 𝜖, ∀𝑖 ∈ {1, . . . , 𝑑}, (D92)⃦⃦⃦⃦

𝜌
(real)
𝑖𝑗 − 1

2
𝑈 (|𝑖⟩+ |𝑗⟩) (⟨𝑖|+ ⟨𝑗|)𝑈−1

⃦⃦⃦⃦
< 𝜖, ∀𝑖 ̸= 𝑗 ∈ {1, . . . , 𝑑}, (D93)⃦⃦⃦⃦

𝜌
(imag)
𝑖𝑗 − 1

2
𝑈 (|𝑖⟩+ i |𝑗⟩) (⟨𝑖| − i ⟨𝑗|)𝑈−1

⃦⃦⃦⃦
< 𝜖, ∀𝑖 ̸= 𝑗 ∈ {2, . . . , 𝑑}. (D94)

We only need to focus on these three sets of states in the following discussion, but the claim also holds
for the other sets of states.
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D.6. Quantum state/process/measurement tomography

In the final step, the learning algorithm utilizes the learned descriptions of the states in the previous
subsection to perform quantum state/process/measurement tomography. For readers familiar with
quantum tomography, the claim could be established easily. For completeness, we present the detailed
derivations in the following.

a. States: ∀𝑥 ∈ 𝒳 , we can always write 𝜌𝑥 as

𝜌𝑥 = 𝑈
∑︁
𝑖𝑗

𝑎𝑖𝑗 |𝑖⟩⟨𝑗|𝑈−1, (D95)

where (𝑎𝑖𝑗)𝑖𝑗 is a Hermitian matrix. If we write∑︁
𝑖𝑗

𝑎𝑖𝑗 |𝑖⟩⟨𝑗| =
∑︁
𝑖

𝑎𝑖𝑖|𝑖⟩⟨𝑖|+
∑︁
𝑖 ̸=𝑗

𝑎𝑖𝑗 + 𝑎𝑗𝑖
2

(|𝑖⟩⟨𝑗|+ |𝑗⟩⟨𝑖|) +
∑︁
𝑖 ̸=𝑗

𝑎𝑖𝑗 − 𝑎𝑗𝑖
2

(|𝑖⟩⟨𝑗| − |𝑗⟩⟨𝑖|), (D96)

and we assume that Eq. (D92), (D93), and (D94) holds exactly, then we can learn the matrix (𝑎𝑖𝑗)𝑖𝑗
by noting the following identities

𝑎𝑖𝑖 = tr(𝜌𝑥𝜌
(basis)
𝑖 ), ∀𝑖, (D97)

𝑎𝑖𝑗 + 𝑎𝑗𝑖
2

= tr(𝜌𝑥𝜌
(real)
𝑖𝑗 )−

tr(𝜌𝑥𝜌
(basis)
𝑖 ) + tr(𝜌𝑥𝜌

(basis)
𝑗 )

2
, ∀𝑖 ̸= 𝑗, (D98)

𝑎𝑖𝑗 − 𝑎𝑗𝑖
2

=
1

i

[︃
tr(𝜌𝑥𝜌

(imag)
𝑖𝑗 )−

tr(𝜌𝑥𝜌
(basis)
𝑖 ) + tr(𝜌𝑥𝜌

(basis)
𝑗 )

2

]︃
, ∀𝑖 ̸= 𝑗. (D99)

The state overlap tr(𝜌1𝜌2) can be estimated using the procedure provided in Appendix D.4 based on
approximate Haar random unitaries. For 𝜂 > 0, define 𝜌𝑥 to be the empirical estimate of

∑︀
𝑖𝑗 𝑎𝑖𝑗 |𝑖⟩⟨𝑗|

based on the above equations. Due to error in the estimation of the state overlap tr(𝜌1𝜌2) and the
error in the states 𝜌(basis)𝑖 , 𝜌

(real)
𝑖𝑗 , 𝜌

(imag)
𝑖𝑗 , we have 𝜌𝑥 ̸=

∑︀
𝑖𝑗 𝑎𝑖𝑗 |𝑖⟩⟨𝑗|. Nevertheless, one can use basic

inequalities to show that
⃦⃦⃦
𝜌𝑥 −

∑︀
𝑖𝑗 𝑎𝑖𝑗 |𝑖⟩⟨𝑗|

⃦⃦⃦
1
< 𝑒𝑎(𝜂) with high probability. The error 𝑒𝑎(𝜂) can be

made arbitrarily small when 𝜂 goes to zero.
b. POVMs: ∀𝑧 ∈ 𝒵,∀𝑏 ∈ ℬ, we can learn 𝑀𝑧𝑏 similar to learning states. We write 𝑀𝑧𝑏 as

𝑀𝑧𝑏 = 𝑈
∑︁
𝑖𝑗

𝑏𝑖𝑗 |𝑖⟩⟨𝑗|𝑈−1, (D100)

where (𝑏𝑖𝑗)𝑖𝑗 is a Hermitian matrix. For any quantum state 𝜌, we can estimate tr(𝑀𝑧𝑏𝜌) by simply
computing the proportion of counts that we see the outcome 𝑏 when we measure ℳ𝑧 on 𝜌. Using
this simple procedure, we can estimate tr(𝑀𝑧𝑏𝜌) to an error 𝜂 with high probability. Then we learn
the matrix (𝑏𝑖𝑗)𝑖𝑗 using the same formulas given in Eq. (D97) (D98) and (D99), but we replace 𝜌𝑥
with 𝑀𝑧𝑏. For 𝜂 > 0, we define 𝑀̃𝑧𝑏 to be the empirical estimate of

∑︀
𝑖𝑗 𝑏𝑖𝑗 |𝑖⟩⟨𝑗|. Due to error in the

estimation of tr(𝑀𝑧𝑏𝜌) and the error in 𝜌(basis)𝑖 , 𝜌
(real)
𝑖𝑗 , 𝜌

(imag)
𝑖𝑗 , 𝑀̃𝑧𝑏 is not exactly equal to

∑︀
𝑖𝑗 𝑏𝑖𝑗 |𝑖⟩⟨𝑗|.

But 𝑀̃𝑧𝑏 will be close to
∑︀

𝑖𝑗 𝑏𝑖𝑗 |𝑖⟩⟨𝑗|. In particular, there exists an error function 𝑒𝑏(𝜂), such that

lim𝜂→0 𝑒𝑏(𝜂) = 0 and
⃦⃦⃦
𝑀̃𝑧𝑏 −

∑︀
𝑖𝑗 𝑏𝑖𝑗 |𝑖⟩⟨𝑗|

⃦⃦⃦
1
< 𝑒𝑏(𝜂) with high probability for any 𝜂.

c. CPTP maps: ∀𝑦 ∈ 𝒴, we can write ℰ𝑦 as

ℰ𝑦(·) = 𝑈
∑︁
𝑖𝑗𝑘𝑙

𝑐𝑖𝑗𝑘𝑙|𝑘⟩⟨𝑙| tr(|𝑖⟩⟨𝑗|𝑈−1(·)𝑈)𝑈−1. (D101)

The coefficients 𝑐𝑖𝑗𝑘𝑙 could be learned using the state overlap procedure given in Appendix D.4 and
the states 𝜌(basis)𝑖 , 𝜌

(real)
𝑖𝑗 , 𝜌

(imag)
𝑖𝑗 in Eq. (D92), (D93), and (D94). To achieve this, we gather a collection
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of data by preparing each state in 𝜌
(basis)
𝑖 , 𝜌

(real)
𝑖𝑗 , 𝜌

(imag)
𝑖𝑗 , evolving under ℰ𝑦, and estimating the state

overlap of the output state with every state in 𝜌
(basis)
𝑖 , 𝜌

(real)
𝑖𝑗 , 𝜌

(imag)
𝑖𝑗 . We can then use the collection

of data to estimate 𝑐𝑖𝑗𝑘𝑙, ∀𝑖𝑗𝑘𝑙. If Eq. (D92), (D93), and (D94) holds exactly, then for 𝑖 ̸= 𝑗 and 𝑘 = 𝑙,

𝑐𝑖𝑗𝑘𝑙 = tr(𝜌
(basis)
𝑘 ℰ𝑦(𝜌(real)𝑖𝑗 )) +

1

i
tr(𝜌

(basis)
𝑘 ℰ𝑦(𝜌(imag)

𝑖𝑗 )) (D102)

−
(︂
1

2
+

1

2i

)︂(︁
tr(𝜌

(basis)
𝑘 ℰ𝑦(𝜌(basis)𝑖 )) + tr(𝜌

(basis)
𝑘 ℰ𝑦(𝜌(basis)𝑗 ))

)︁
(D103)

For 𝑖 = 𝑗 and 𝑘 = 𝑙, we can obtain

𝑐𝑖𝑗𝑘𝑙 = tr(𝜌
(basis)
𝑘 ℰ𝑦(𝜌(basis)𝑖 )). (D104)

For 𝑖 = 𝑗 and 𝑘 ̸= 𝑙, we see that

𝑐𝑖𝑗𝑘𝑙 = tr(𝜌
(real)
𝑘𝑙 ℰ𝑦(𝜌(basis)𝑖 )) +

1

i
tr(𝜌

(imag)
𝑘𝑙 ℰ𝑦(𝜌(basis)𝑖 )) (D105)

−
(︂
1

2
+

1

2i

)︂(︁
tr(𝜌

(basis)
𝑘 ℰ𝑦(𝜌(basis)𝑖 )) + tr(𝜌

(basis)
𝑙 ℰ𝑦(𝜌(basis)𝑖 ))

)︁
(D106)

For 𝑖 ̸= 𝑗 and 𝑘 ̸= 𝑙, we have

𝑐𝑖𝑗𝑘𝑙 = tr

(︃(︂
𝜌
(real)
𝑘𝑙 +

1

i
𝜌
(imag)
𝑘𝑙 −

(︂
1

2
+

1

2i

)︂(︁
𝜌
(basis)
𝑘 + 𝜌

(basis)
𝑙

)︁)︂
(D107)

ℰ𝑦
(︂(︂

𝜌
(real)
𝑖𝑗 +

1

i
𝜌
(imag)
𝑖𝑗 −

(︂
1

2
+

1

2i

)︂(︁
𝜌
(basis)
𝑖 + 𝜌

(basis)
𝑗

)︁)︂)︂)︃
. (D108)

Expanding the right hand side of the above equation gives a weighted sum of tr(𝜌2ℰ𝑦(𝜌1)) for some
states 𝜌1, 𝜌2. We consider ℰ̃𝑦(·) to be the empirical estimate for

∑︀
𝑖𝑗𝑘𝑙 𝑐𝑖𝑗𝑘𝑙|𝑘⟩⟨𝑙| tr(|𝑖⟩⟨𝑗|(·)). There

exists an error function 𝑒𝑐(𝜂) such that
⃦⃦⃦
ℰ̃𝑦(·)−

∑︀
𝑖𝑗𝑘𝑙 𝑐𝑖𝑗𝑘𝑙|𝑘⟩⟨𝑙| tr(|𝑖⟩⟨𝑗|(·))

⃦⃦⃦
◇
< 𝑒𝑐(𝜂). Furthermore,

as 𝜂 approaches zero, 𝑒𝑐(𝜂) goes to zero.

D.7. Putting everything together

For all world model𝒲 ∈ 𝒬, after finishing the tomography step in Appendix D.6, we can guarantee
the following. There is an error function 𝜖(𝜂). For 𝜂 > 0, there exists a global unitary or anti-unitary
transformation 𝑈 , such that the learned descriptions 𝜌𝑥, ℰ̃𝑦, 𝑀̃𝑧𝑏 satisfies⃦⃦

𝜌𝑥 − 𝑈𝜌𝑥𝑈−1
⃦⃦
1
< 𝜖(𝜂), (D109)⃦⃦⃦

𝑀𝑧𝑏 − 𝑈𝑀̃𝑧𝑏𝑈
−1
⃦⃦⃦
1
< 𝜖(𝜂), (D110)⃦⃦⃦

ℰ𝑦(·)− 𝑈 ℰ̃𝑦(𝑈−1(·)𝑈)𝑈−1
⃦⃦⃦
◇
< 𝜖(𝜂), (D111)

for all 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴, 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ. As 𝜂 goes to zero, 𝜖(𝜂) goes to zero. After running the above
procedures with precision parameter 𝜂, the learning algorithm considers 𝜂 ← 𝜂/2 and repeatedly runs
the previous steps to obtain more accurate descriptions. Because 𝜖(𝜂) goes to zero as 𝜂 goes to zero,
the learning algorithm can learn the all the physical descriptions to arbitrarily small error up to a
global unitary or anti-unitary transformation. Hence, 𝒬 is learnable. This concludes the proof of
Theorem D.1.
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E. Basic properties of learnability and unlearnability

In this section, we will present various basic results regarding the relationship between different
classes of world models. These results will be useful for proving what kinds of world models are
learnable, and what kinds are not, in the following sections.

We begin with a basic property: If a model class 𝒬 is learnable, then any subset 𝒬′ of 𝒬 is also
learnable. This property is expected because removing possible models from the class will not make it
harder to learn which model is the correct one. We note that 𝒬′ and 𝒬 are model classes, i.e., sets of
potential world models. The relation of 𝒬′ ⊆ 𝒬 is very different from the concept of extension given
in Definition A.4, which considers relation between two world models.

Proposition E.1 (Monotonicity of (un)learnability). Given sets 𝒳 ,𝒴,𝒵,ℬ and two model classes
𝒬,𝒬′ over 𝒳 ,𝒴,𝒵,ℬ such that 𝒬′ ⊆ 𝒬. If 𝒬 is learnable, then 𝒬′ is learnable. Equivalently, if 𝒬′ is
unlearnable, then 𝒬 is unlearnable.

Proof. Every world model in 𝒬′ is in 𝒬. Hence, if 𝒬 is learnable, then 𝒬′ ⊆ 𝒬 is learnable. This is
equivalent to the contrapositive statement: if 𝒬′ ⊆ 𝒬 is unlearnable, then 𝒬 is unlearnable.

Another important result states that a model class 𝒬 is unlearnable if 𝒬 contains world models
𝒲1 and 𝒲2 that are weakly indistinguishable, but are not equivalent. This follows because, by the
definition of weakly indistinguishable, no experiment within the model class can tell𝒲1 and𝒲2 apart.
It may seem that this follows immediately from the definition, but there are subtlety arising from the
fact that learning is probabilistic and allows arbitrarily small error.

Proposition E.2 (Weakly indistinguishability implies unlearnability). Given sets 𝒳 ,𝒴,𝒵,ℬ and a
model class 𝒬 = {𝒲} for 𝑑-dimensional world models over 𝒳 ,𝒴,𝒵,ℬ. If there exists 𝒲1 ̸≡ 𝒲2 ∈ 𝒬
such that 𝒲1 and 𝒲2 are weakly indistinguishable, then 𝒬 is unlearnable.

Proof. Assume that 𝒲𝐴 ̸≡ 𝒲𝐵 ∈ 𝒬 are weakly indistinguishable. Because 𝒲𝐴 ̸≡ 𝒲𝐵, for all unitary
and anti-unitary 𝑈 , there exists 𝑥 ∈ 𝒳 or 𝑦 ∈ 𝒴 or 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ such that the corresponding physical
operations are different, i.e., 𝜌𝐵𝑥 ̸= 𝑈𝜌𝐴𝑥𝑈

−1, ℰ𝐵𝑦 (·) ̸= 𝑈ℰ𝐴𝑦 (𝑈−1(·)𝑈)𝑈−1, or 𝑀𝐵
𝑧𝑏 ̸= 𝑈𝑀𝐴

𝑧𝑏𝑈
−1. We

define the minimum error 𝜖 over 𝑈 to be

𝜖 = min
𝑈

sup
𝑥∈𝒳
𝑦∈𝒴
𝑧∈𝒵
𝑏∈ℬ

(︁⃦⃦
𝜌𝐵𝑥 − 𝑈𝜌𝐴𝑥𝑈−1

⃦⃦
1
,
⃦⃦
ℰ𝐵𝑦 (·)− 𝑈ℰ𝐴𝑦 (𝑈−1(·)𝑈)𝑈−1

⃦⃦
◇ ,
⃦⃦
𝑀𝐵
𝑧𝑏 − 𝑈𝑀𝐴

𝑧𝑏𝑈
−1
⃦⃦
1

)︁
, (E1)

where 𝑈 is a unitary or anti-unitary transformation. We can use minimum instead of infimum because
unitary and anti-unitary transformations form a compact space. If 𝜖 = 0, then 𝒲𝐴 ≡ 𝒲𝐵. Hence
𝜖 > 0. The quantity 𝜖 sets an lower bound on the error for what any algorithm could learn.

Suppose that 𝒬 is learnable. Then, there is an algorithm 𝒜, for 𝛿 = 1/3 and 𝜖 = 𝜖/3, for world
model𝒲𝐴, there exists a unitary or anti-unitary 𝑈𝐴, such that for any action, with probability at least
1−𝛿, the output from the algorithm has an error of at most 𝜖 after transforming under 𝑈𝐴. Similarly, for
world model 𝒲𝐵, there exists a unitary or anti-unitary 𝑈𝐵, such that for any action, with probability
at least 1− 𝛿, the output from the algorithm has an error of at most 𝜖 after transforming under 𝑈𝐵.
Consider 𝑈* = 𝑈𝐵𝑈

−1
𝐴 . From the definition of 𝜖, we have

sup
𝑥∈𝒳
𝑦∈𝒴
𝑧∈𝒵
𝑏∈ℬ

(︁⃦⃦
𝜌𝐵𝑥 − 𝑈*𝜌

𝐴
𝑥𝑈

−1
*
⃦⃦
1
,
⃦⃦
ℰ𝐵𝑦 (·)− 𝑈*ℰ𝐴𝑦 (𝑈−1

* (·)𝑈*)𝑈
−1
*
⃦⃦
◇ ,
⃦⃦
𝑀𝐵
𝑧𝑏 − 𝑈*𝑀

𝐴
𝑧𝑏𝑈

−1
*
⃦⃦
1

)︁
≥ 𝜖. (E2)

Hence, there exists an action such that the error > 9
10𝜖. Without loss of generality, assume that for

some 𝑥 ∈ 𝒳 ,
⃦⃦
𝜌𝐵𝑥 − 𝑈*𝜌

𝐴
𝑥𝑈

−1
*
⃦⃦
1
> 9

10𝜖.
Because 𝒲𝐴,𝒲𝐵 are weakly indistinguishable, the output 𝜌𝑥 will have the same probability dis-

tribution for world model 𝒲𝐴 and 𝒲𝐵. This is an immediate consequence of Eq. (A6) in Defini-
tion A.6. We will refer to the probability distribution as 𝑝𝐴𝐵(𝜌𝑥). From the learnability, we have
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⃦⃦
𝜌𝐴𝑥 − 𝑈𝐴𝜌𝑥𝑈−1

𝐴

⃦⃦
1
≤ 𝜖 with probability ≥ 2/3 and

⃦⃦
𝜌𝐵𝑥 − 𝑈𝐵𝜌𝑥𝑈−1

𝐵

⃦⃦
1
≤ 𝜖 with probability ≥ 2/3.

The above probability statement are over the same probability distribution 𝑝𝐴𝐵(𝜌𝑥). Equivalently,

𝑃
[︀⃦⃦
𝜌𝐴𝑥 − 𝑈𝐴𝜌𝑥𝑈−1

𝐴

⃦⃦
1
> 𝜖
]︀
< 1/3, (E3)

𝑃
[︀⃦⃦
𝜌𝐵𝑥 − 𝑈𝐵𝜌𝑥𝑈−1

𝐵

⃦⃦
1
> 𝜖
]︀
< 1/3, (E4)

Hence, by union bound, we have

𝑃
[︀⃦⃦
𝜌𝐴𝑥 − 𝑈𝐴𝜌𝑥𝑈−1

𝐴

⃦⃦
1
> 𝜖 or

⃦⃦
𝜌𝐵𝑥 − 𝑈𝐵𝜌𝑥𝑈−1

𝐵

⃦⃦
1
> 𝜖
]︀
< 2/3. (E5)

This is equivalent to the fact that
⃦⃦
𝜌𝐴𝑥 − 𝑈𝐴𝜌𝑥𝑈−1

𝐴

⃦⃦
1
≤ 𝜖 and

⃦⃦
𝜌𝐵𝑥 − 𝑈𝐵𝜌𝑥𝑈−1

𝐵

⃦⃦
1
≤ 𝜖 with probabil-

ity ≥ 1/3. Because the probability is greater than zero and the probability distribution is over the
choice of 𝜌𝑥, there exists 𝜌𝑥 ∈ C𝑑×𝑑 such that

⃦⃦
𝜌𝐴𝑥 − 𝑈𝐴𝜌𝑥𝑈−1

𝐴

⃦⃦
1
≤ 𝜖 and

⃦⃦
𝜌𝐵𝑥 − 𝑈𝐵𝜌𝑥𝑈−1

𝐵

⃦⃦
1
≤

𝜖. Because trace norm ‖·‖1 is invariant under unitary or anti-unitary transformation, we have⃦⃦
𝑈𝐵𝑈

−1
𝐴 𝜌𝐴𝑥𝑈𝐴𝑈

−1
𝐵 − 𝑈𝐵𝜌𝑥𝑈−1

𝐵

⃦⃦
1
≤ 𝜖. Recall that 𝑈* = 𝑈𝐵𝑈

−1
𝐴 . By triangle inequality, we have

9

10
𝜖 <

⃦⃦
𝑈*𝜌

𝐴
𝑥𝑈

−1
* − 𝜌𝐵𝑥

⃦⃦
1
≤
⃦⃦
𝑈𝐵𝑈

−1
𝐴 𝜌𝐴𝑥𝑈𝐴𝑈

−1
𝐵 − 𝑈𝐵𝜌𝑥𝑈−1

𝐵

⃦⃦
1
+
⃦⃦
𝜌𝐵𝑥 − 𝑈𝐵𝜌𝑥𝑈−1

𝐵

⃦⃦
1
≤ 2𝜖 =

2

3
𝜖. (E6)

This is a contradiction, hence 𝒬 is not learnable.

We present a simple example where 𝒲1 and 𝒲2 are weakly indistinguishable, but not equivalent.
Consider a model class 𝒬 that contains two 𝑑 = 2-dimensional world models {𝒲𝐴,𝒲𝐵} with the
action space 𝒳 = {0},𝒴 = {ℎ, 𝑡},𝒵 = {0} and the outcome space ℬ = {0, 1}. We define the physical
actions in 𝒲𝐴 and 𝒲𝐵 as

𝜌𝐴0 = 𝐼/2, ℰ𝐴ℎ (𝜌) = 𝐻𝜌𝐻†, ℰ𝐴𝑡 (𝜌) = 𝑇𝜌𝑇 †, ℳ𝐴
0 = {𝐼/2, 𝐼/2}, (E7)

𝜌𝐵0 = |0⟩⟨0|, ℰ𝐵ℎ (𝜌) = 𝐻𝜌𝐻†, ℰ𝐵𝑡 (𝜌) = 𝑇𝜌𝑇 †, ℳ𝐵
0 = {𝐼/2, 𝐼/2}. (E8)

𝒲𝐴 has an initial state that is maximally mixed, hence the state 𝜌𝐴0 has a purity tr((𝜌𝐴0 )
2) of 1/2.

But 𝒲𝐵 has an initial state that is pure, so the state 𝜌𝐵0 has a purity of 1. Theorem A.8 implies
that the two world models are not equivalent. However, both of the POVMS ℳ𝐴

0 and ℳ𝐵
0 produce

uniformly random outcomes in ℬ when applied to any state. Therefore, 𝒲𝐴 and 𝒲𝐵 are weakly
indistinguishable, and hence by Proposition E.2 the model class 𝒬 is unlearnable. In this example,
both of the world models𝒲𝐴 and𝒲𝐵 have a useless measurement device that provides no information,
so there is no way to learn which is which.

Monotonicity of learnability focuses on two model classes that have the same action spaces. Here,
we provide a basic proposition that considers two model classes with different action spaces. The
proposition holds because of the compositional nature in the design of an experiment — we can
compose different states, evolutions, and POVMs to form new states, evolutions, and POVMs.

Proposition E.3 (Learnability after adding composed states). Given sets 𝒳 ,𝒴,𝒵,ℬ and a model
class 𝒬 = {𝒲} over 𝒳 ,𝒴,𝒵,ℬ. Consider a set Ξ, a constant 𝐿 ≥ 1, and a function 𝑓 that takes
in 𝜉 ∈ Ξ and outputs (𝑥, 𝑦1, . . . , 𝑦ℓ) where ℓ ≤ 𝐿, 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦ℓ ∈ 𝒴. The model class 𝒬′ is over
𝒳 ′ = 𝒳 ∪ Ξ,𝒴,𝒵,ℬ, and contains the world model(︃

{𝜌𝑥}𝑥∈𝒳 ∪ {𝜌𝜉 = (ℰ𝑦ℓ ∘ . . . ∘ ℰ𝑦1) (𝜌𝑥)} 𝜉∈Ξ,
𝑓(𝜉)=(𝑥,𝑦1,...,𝑦ℓ)

, {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵
)︃
, (E9)

for each world model 𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵) in the original model class 𝒬. We have 𝒬
is learnable if and only if 𝒬′ is learnable.

Proof. We begin with two basic statements. First, every experiment in 𝒬 can be simulated by an
experiment in 𝒬′. And every experiment in 𝒬′ can be simulated by an experiment in 𝒬. The first
statement immediately holds by noting that 𝒬′ contains all the actions in 𝒬. The second statement
is true because the new action added in 𝒬′ is composed of actions in 𝒬. Since each experiment 𝐸 is
a composition of actions, we can compose the corresponding actions in 𝒬 to simulate an experiment
in 𝒬′. The proof of this proposition is simple given the knowledge of these two facts. We separate the
proof for the two directions of the statement into two paragraphs.
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a. 𝒬′ is learnable implies 𝒬 is learnable: If 𝒬′ is learnable, then there is a learning algorithm,
such that for every action 𝑎 in the action spaces 𝒳 ,𝒴,𝒵, the algorithm uses actions in 𝒳 ′,𝒴,𝒵 to
learn the intrinsic description of action 𝑎. We can simulate every added action 𝜉 in Ξ with the actions
𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦ℓ ∈ 𝒴, where 𝑓(𝜉) = (𝑥, 𝑦1, . . . , 𝑦ℓ). Hence, we have a learning algorithm using only
actions in 𝒳 ,𝒴,𝒵 to learn the description of actions in 𝒳 ,𝒴,𝒵 under the model class 𝒬. Together,
𝒬 is learnable if 𝒬′ is learnable.

b. 𝒬 is learnable implies 𝒬′ is learnable: If 𝒬 is learnable, then there is a learning algorithm that
learns the physical operation associated with every actions in 𝒳 ,𝒴,𝒵. To show that 𝒬′ is learnable,
we need to show that all actions in 𝒳 ′,𝒴,𝒵 are learnable. By simulating the experiments under 𝒬
using actions in 𝒬′, we can learn all the physical operations associated to actions in 𝒳 ,𝒴,𝒵. Now for
all 𝜉 ∈ Ξ, the initial state 𝜌𝜉 associated to the additional action 𝜉 with 𝑓(𝜉) = (𝑥, 𝑦1, . . . , 𝑦ℓ) can be
learned. This follows from the facts that 𝜌𝜉 is equal to (ℰ𝑦ℓ ∘ . . . ∘ ℰ𝑦1) (𝜌𝑥), and each of 𝜌𝑥, ℰ𝑦1 , . . . , ℰ𝑦ℓ
can be learned to arbitrarily high accuracy up to a global unitary or anti-unitary transformation.
Therefore, 𝒬′ is learnable.

The same proof for Proposition E.3 can be used to establish the following other two propositions
where we consider a model class with new composed CPTP maps or POVM.

Proposition E.4 (Learnability after adding composed CPTP maps). Given sets 𝒳 ,𝒴,𝒵,ℬ and a
model class 𝒬 = {𝒲} over 𝒳 ,𝒴,𝒵,ℬ. Consider a set Ξ, a constant 𝐿 ≥ 2, and a function 𝑓 that
takes in an element 𝜉 in Ξ and outputs (𝑦1, . . . , 𝑦ℓ) where ℓ ≤ 𝐿, 𝑦1, . . . , 𝑦ℓ ∈ 𝒴. The model class 𝒬′ is
over 𝒳 ,𝒴 ′ = 𝒴 ∪ Ξ,𝒵,ℬ, and contains the world model(︃

{𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 ∪ {ℰ𝜉 = (ℰ𝑦ℓ ∘ . . . ∘ ℰ𝑦1)} 𝜉∈Ξ,
𝑓(𝜉)=(𝑦1,...,𝑦ℓ)

, {ℳ𝑧}𝑧∈𝒵
)︃
, (E10)

for each world model 𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵) in the original model class 𝒬. We have 𝒬
is learnable if and only if 𝒬′ is learnable.

Proposition E.5 (Learnability after adding composed POVMs). Given sets 𝒳 ,𝒴,𝒵,ℬ and a model
class 𝒬 = {𝒲} over 𝒳 ,𝒴,𝒵,ℬ. Consider a set Ξ, a constant 𝐿 ≥ 1, and a function 𝑓 that takes in
an element 𝜉 in Ξ and outputs (𝑦1, . . . , 𝑦ℓ, 𝑧) where ℓ ≤ 𝐿, 𝑦1, . . . , 𝑦ℓ ∈ 𝒴, 𝑧 ∈ 𝒵. The model class 𝒬′

is over the spaces 𝒳 ,𝒴,𝒵 ′ = 𝒵 ∪ Ξ,ℬ, and contains the world model(︃
{𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵 ∪ {ℳ𝜉 =ℳ𝑧 ∘ (ℰ𝑦ℓ ∘ . . . ∘ ℰ𝑦1)} 𝜉∈Ξ,

𝑓(𝜉)=(𝑦1,...,𝑦ℓ,𝑧)

)︃
, (E11)

for each world model 𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵) in the original model class 𝒬. We have 𝒬
is learnable if and only if 𝒬′ is learnable.

Similar to the three propositions stated above, we can consider new actions that are convex com-
binations of existing actions. Adding the new actions does not affect the learnability.

Proposition E.6 (Learnability after adding mixtures of states). Given sets 𝒳 ,𝒴,𝒵,ℬ and a model
class 𝒬 = {𝒲} over 𝒳 ,𝒴,𝒵,ℬ. Consider a set Ξ, a constant 𝐿 ≥ 1, and a function 𝑓 that takes in
an element 𝜉 in Ξ and outputs ((𝑝1, 𝑥1) . . . , (𝑝ℓ, 𝑥ℓ)) where ℓ ≤ 𝐿, 𝑥1, . . . , 𝑥ℓ ∈ 𝒳 and (𝑝1, . . . , 𝑝ℓ) is a
probability distribution. The model class 𝒬′ is over the spaces 𝒳 ′ = 𝒳 ∪Ξ,𝒴,𝒵,ℬ, and is contains the
world model ⎛⎜⎝{𝜌𝑥}𝑥∈𝒳 ∪{︃𝜌𝜉 = 𝐿∑︁

ℓ=1

𝑝ℓ𝜌𝑥ℓ

}︃
𝜉∈Ξ,

𝑓(𝜉)=((𝑝1,𝑥1)...,(𝑝ℓ,𝑥ℓ))

, {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵

⎞⎟⎠ , (E12)

for each world model 𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵) in the original model class 𝒬. We have 𝒬
is learnable if and only if 𝒬′ is learnable.
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Proof. Similar to the proof of Proposition E.3, every experiment in 𝒬 can be simulated by experiments
in 𝒬′. And every experiment in 𝒬′ can be simulated by experiments in 𝒬. The first statement is
trivial as 𝒬′ contains all actions in 𝒬. The second statement is true because we can simulate any
experiment that begins with the action 𝜉 ∈ Ξ by randomly sampling 𝑥𝑖 from (𝑥1, . . . , 𝑥ℓ) according
to the probability distribution (𝑝1, . . . , 𝑝ℓ) and running the experiment using 𝑥𝑖 ∈ 𝒳 . Using essential
the same proof as Proposition E.3, we can show that 𝒬′ is learnable implies 𝒬 is learnable and 𝒬 is
learnable implies 𝒬′ is learnable.

Using essentially the same proof as Proposition E.6, we can also obtain the equivalence of learn-
ability after adding mixtures of CPTP maps or POVMs.

F. Gate-dependent Pauli noises is unlearnable with Clifford+T gates

F.1. Statement and unlearnability of a target model class

In quantum state/process tomography, it is well known that Clifford circuits are informationally
complete. For example, we can learn any quantum state with Clifford circuits and computational basis
measurement. We can also learn any quantum process with Clifford circuits, all zero state preparation,
and computational basis measurements. In these works, it is often assumed that the Clifford circuits,
the state preparation, and the measurements are perfect. The situation changes dramatically when
these physical operations are not perfect.

In this section, we show that when there are gate-dependent Pauli noise, Clifford circuits are
fundamentally uncapable of learning the noise processes. Even more interestingly, adding T gate is
still insufficient.

Theorem F.1 (Restatement of Theorem 6; Gate-dependent Pauli noise is unlearnable with Clifford+T
gates). Given 1

2 > 𝜖 > 0. Consider a qubit system. Suppose we can prepare the zero state |0⟩ perfectly
and any state 𝜌 with an unknown error ≤ 𝜖, measure in the computational basis perfectly, and apply
Clifford gates and T gate, where each gate is followed by an unknown gate-dependent Pauli noise
channel that is 𝜖-close to the identity channel. It is impossible for any algorithm to learn the gate-
dependent Pauli noise channels to arbitrarily small error.

To prove Theorem F.1, we begin by stating the conditions in Theorem F.1 as a model class. Consider
the the action spaces 𝒳 = {𝑥𝜎}𝜎:state,𝒴 = {𝑦𝑈}𝑈∈𝒞∪{𝑇},𝒵 = {0}, where 𝜎 is a quantum state, 𝒞 is
the Clifford group, and 𝑇 is the T gate. And consider the outcome space ℬ = {0, 1}. Given 𝜖 > 0, we
define the model class 𝒬𝜖 = {𝒲} to be the set of world models 𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵)
that satisfies the following conditions

‖𝜌𝑥𝜎 − 𝜎‖1 ≤ 𝜖, ∀𝜎 : state, (F1)
𝜌𝑥|0⟩⟨0| = |0⟩⟨0|, (F2)

ℰ𝑦𝑈 (𝜌) = 𝒫𝑈 (𝑈𝜌𝑈 †), ‖𝒫𝑈 − ℐ‖◇ ≤ 𝜖, ∀𝑈 ∈ 𝒞 ∪ {𝑇}, (F3)
ℳ0 = {|0⟩⟨0|, |1⟩⟨1|}. (F4)

where 𝒫𝑈 is a Pauli channel, i.e.,

𝒫𝑈 (𝜌) = 𝑝𝑈𝐼 𝜌+ 𝑝𝑈𝑋𝑋𝜌𝑋 + 𝑝𝑈𝑌 𝑌 𝜌𝑌 + 𝑝𝑈𝑍𝑍𝜌𝑍 (F5)

for some probability distribution
(︀
𝑝𝑈𝐼 , 𝑝

𝑈
𝑋 , 𝑝

𝑈
𝑌 , 𝑝

𝑈
𝑍

)︀
, or equivalently

𝒫𝑈 (𝐼) = 𝐼,𝒫𝑈 (𝑋) = 𝜆𝑈𝑋𝑋,𝒫𝑈 (𝑌 ) = 𝜆𝑈𝑌 𝑌,𝒫𝑈 (𝑍) = 𝜆𝑈𝑍𝑍 (F6)

for some real value 𝜆𝑈𝑋 , 𝜆
𝑈
𝑌 , 𝜆

𝑈
𝑍 , ℐ is the identity channel, and ‖·‖◇ is the diamond norm.
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F.2. Unlearnability of 𝒬𝜖

We provide more analysis of 𝒬𝜖 in this subsection. First, we show that 𝒬𝜖 is not redundant: no
distinct world models in 𝒬𝜖 are equivalent and hence describe the same physical reality. From Theo-
rem A.8, two equivalent world models are related by a global unitary or anti-unitary transformation
𝑈 . If two distinct world models in 𝒬𝜖 are equivalent, then there exists a global unitary or anti-unitary
transformation 𝑈 ̸= ei𝜑𝐼, for some 𝜑 ∈ R, and Pauli channels 𝒫,𝒫 ′,𝒬,𝒬′ that are at most 𝜖-far from
identity channel, such that

|0⟩⟨0| = 𝑈 |0⟩⟨0|𝑈−1, (F7)

|1⟩⟨1| = 𝑈 |1⟩⟨1|𝑈−1, (F8)

𝒫(𝐻|0⟩⟨0|𝐻) = 𝑈𝒫 ′(𝐻𝑈−1|0⟩⟨0|𝑈𝐻)𝑈−1, (F9)

𝒬((𝑆𝐻)|0⟩⟨0|(𝑆𝐻)†) = 𝑈𝒬′((𝑆𝐻)𝑈−1|0⟩⟨0|𝑈(𝑆𝐻)†)𝑈−1, (F10)

where 𝐻 is the Hadamard gate and 𝑆 is the phase gate. These conditions imply that

𝑍 = 𝑈𝑍𝑈−1, 𝜆𝑋 = 𝜆′𝑈𝑋𝑈−1,Λ𝑌 = Λ′𝑈𝑌 𝑈−1, (F11)

where 𝜆, 𝜆′,Λ,Λ′ ≥ 1/2 from Eq. (F12), |+⟩ , |𝑦+⟩ are the eigenvector with eigenvalue +1 for 𝑋,𝑌 .
Because a unitary 𝑈 = ei𝜑 exp(i(𝑎𝑋+𝑏𝑌 +𝑐𝑍)) and an anti-unitary 𝑈 = ei𝜑 exp(i(𝑎𝑋+𝑏𝑌 +𝑐𝑍))𝐾 for
𝑎, 𝑏, 𝑐, 𝜑 ∈ R and𝐾 the complex conjugation, Eq. (F11) implies that 𝑈 = ei𝜑𝐼, which is a contradiction.
Therefore, no distinct world models in 𝒬𝜖 are equivalent.

The fact that 𝒬𝜖 is not redundant is useful for the following logical reasoning. Suppose no algorithm
can learn the gate-dependent Pauli noise channels to arbitrarily small error. Then we can find two
distinct world models in 𝒬 such that the two world models are weakly indistinguishable. From the
non-redundancy of 𝒬𝜖, these two distinct world models are not equivalent to one another. Hence from
Proposition E.2, the model class 𝒬𝜖 is unlearnable.

On the other hand, suppose there is an algorithm that can learn the gate-dependent Pauli noise
channels to arbitrarily small error. Recall that for two Pauli channels 𝒫,𝒫 ′, ‖𝒫 − 𝒫 ′‖◇ = |𝑝𝐼 − 𝑝′𝐼 |+
|𝑝𝑋 − 𝑝′𝑋 |+ |𝑝𝑌 − 𝑝′𝑌 |+ |𝑝𝑍 − 𝑝′𝑍 | and 𝜆𝑋 = 1− 2𝑝𝑌 − 2𝑝𝑍 , 𝜆𝑌 = 1− 2𝑝𝑋 − 2𝑝𝑍 , 𝜆𝑍 = 1− 2𝑝𝑋 − 2𝑝𝑌 .
Therefore, ‖𝒫 − ℐ‖ < 𝜖 ≤ 1/2 implies

2(𝑝𝑋 + 𝑝𝑌 + 𝑝𝑍) ≤ 1/2, 𝜆𝑋 , 𝜆𝑌 , 𝜆𝑍 ≥ 1/2. (F12)

We can build on the Pauli channel learning algorithm to learn 𝜌𝑥𝜎 for any state 𝜎 using the following
equation

𝜌𝑥𝜎 =
𝐼

2
+ tr(𝑋𝜌𝑥𝜎)

𝑋

2
+ tr(𝑌 𝜌𝑥𝜎)

𝑌

2
+ tr(𝑍𝜌𝑥𝜎)

𝑍

2
(F13)

=
𝐼

2
+

tr(𝑍ℰ𝑦𝐻 (𝜌𝑥𝜎))
𝜆𝐻𝑍

𝑋

2
− tr(𝑍ℰ𝑦𝑆 (ℰ𝑦𝐻 (𝜌𝑥𝜎)))

𝜆𝐻𝑍 𝜆
𝑆
𝑋

𝑌

2
+ tr(𝑍𝜌𝑥𝜎)

𝑍

2
, (F14)

and tr(𝑍𝜌) = ⟨0| 𝜌 |0⟩−⟨1| 𝜌 |1⟩. Because every action in 𝒬𝜖 can be learned to arbitrarily high accuracy,
the model class 𝒬𝜖 is learnable. Together, Theorem F.1 is equivalent to stating that 𝒬𝜖 is unlearnable.
In the following, we will prove that 𝒬𝜖 is unlearnable.

F.3. Unlearnability of a simpler model class

We combine the basic results proven in Appendix E to establish the unlearnability of 𝒬𝜖 The
model class 𝒬𝜖 is quite complicated. So we will begin by proving that a simpler model class 𝒬̃𝜖 is
unlearnable. We will then use a set of tools developed in Appendix E to show the unlearnability of 𝒬𝜖
from the unlearnability of 𝒬̃𝜖. The simpler model class 𝒬̃𝜖 is over a simpler action spaces 𝒳 = {0},𝒴 =
{ℎ, 𝑠, 𝑡},𝒵 = {0} and the same outcome space ℬ = {0, 1}. Here, the three actions ℎ, 𝑠, 𝑡 represent
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Hadamard gate, Phase gate, and T gate. Each world model 𝒲 =
(︁
{𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵

)︁
in

𝒬̃𝜖 is fully specified by the following conditions,

𝜌0 = |0⟩⟨0|, (F15)

ℰℎ(𝜌) = 𝒫ℎ(𝐻𝜌𝐻†), ‖𝒫ℎ − ℐ‖◇ ≤ 𝜖, (F16)

ℰ𝑠(𝜌) = 𝒫𝑠(𝑆𝜌𝑆†), ‖𝒫𝑠 − ℐ‖◇ ≤ 𝜖, (F17)

ℰ𝑡(𝜌) = 𝒫𝑡(𝑇𝜌𝑇 †), ‖𝒫𝑡 − ℐ‖◇ ≤ 𝜖, (F18)
ℳ0 = {|0⟩⟨0|, |1⟩⟨1|}, (F19)

where 𝒫ℎ,𝒫𝑠,𝒫𝑡 are Pauli channels. The simpler model class 𝒬̃𝜖 considers perfect zero state prepa-
ration, perfect computational basis measurement, and noisy Hadamard, phase, and T gates that are
subject to Pauli noise channels. And every world model in the simpler model class 𝒬̃𝜖 is fully deter-
mines by the three Pauli noise channels 𝒫ℎ,𝒫𝑠,𝒫𝑡. In the following lemma, we state the unlearnability
of the simpler model class 𝒬̃𝜖.
Lemma F.2 (Gate-dependent Pauli noise is unlearnable with Hadamard+S+T gates and |0⟩). Given
𝜖 > 0. Consider a qubit system. Suppose we can prepare a perfect zero state |0⟩, measure in the
computational basis perfectly, and apply Hadamard gate, phase gate, and T gate, where each gate is
followed by an unknown gate-dependent Pauli noise channel that is 𝜖-close to the identity channel. It
is impossible for any algorithm to learn the gate-dependent Pauli noise channels to arbitrarily small
error. Equivalently, 𝒬̃𝜖 is unlearnable.

The proof of Lemma F.2 is based on Proposition E.2. The proposition states that when two world
models in a model class are weakly indistinguishable and are not equivalent, then the model class is
unlearnable. We will identify two such world models in 𝒬̃𝜖, then apply Proposition E.2 to conclude
the proof. On a high level, the existence of two weakly indistinguishable world models arises from
the fact that the geometric structure for the action of Hadamard gate, phase gate, and T gate are
well-aligned with Pauli noise channels, causing some noise to be indistinguishable from another.

F.4. Actions of Clifford+T on Pauli operators

We begin by illustrating the geometric structure in any quantum experiments one could perform.
Every experiment under the given action spaces 𝒳 ,𝒴,𝒵 is 𝑥 = 0, 𝑦1, . . . , 𝑦𝐿 ∈ {ℎ, 𝑡}, 𝑧 = 0. Now, we
consider the actions of ℰℎ, ℰ𝑠, and ℰ𝑡 on Pauli operators,

ℰℎ(𝑋) = 𝜆ℎ𝑍𝑍, ℰ𝑠(𝑋) = 𝜆𝑠𝑌 𝑌, ℰ𝑡(𝑋) =
1√
2
𝜆𝑡𝑋𝑋 +

1√
2
𝜆𝑡𝑌 𝑌, (F20)

ℰℎ(𝑌 ) = −𝜆ℎ𝑌 𝑌, ℰ𝑠(𝑌 ) = −𝜆𝑠𝑋𝑋, ℰ𝑡(𝑌 ) = − 1√
2
𝜆𝑡𝑋𝑋 +

1√
2
𝜆𝑡𝑌 𝑌, (F21)

ℰℎ(𝑍) = 𝜆ℎ𝑋𝑋, ℰ𝑠(𝑍) = 𝜆𝑠𝑍𝑍, ℰ𝑡(𝑍) = 𝜆𝑡𝑍𝑍, (F22)

where 𝜆ℎ𝑋 , 𝜆
ℎ
𝑌 , 𝜆

ℎ
𝑍 are the Pauli eigenvalues that defines the Pauli noise channel for the Hadamard

gate, 𝜆𝑠𝑋 , 𝜆
𝑠
𝑌 , 𝜆

𝑠
𝑍 defines the Pauli noise channel for the phase gate, and 𝜆𝑡𝑋 , 𝜆

𝑡
𝑌 , 𝜆

𝑡
𝑍 defines the

Pauli noise channel for the T gate. Every world model in 𝒬𝜖 is specified by the nine real values
𝜆ℎ𝑋 , 𝜆

ℎ
𝑌 , 𝜆

ℎ
𝑍 , 𝜆

𝑠
𝑋 , 𝜆

𝑠
𝑌 , 𝜆

𝑠
𝑍 , 𝜆

𝑡
𝑋 , 𝜆

𝑡
𝑌 , 𝜆

𝑡
𝑍 .

For an experiment specified by 𝑥 = 0, 𝑦1, . . . , 𝑦𝐿 ∈ {ℎ, 𝑡}, 𝑧 = 0, the probability that the experi-
mental outcome is 0 can be written as

1

2
+

1

2
tr (𝑍(ℰ𝑦𝐿 ∘ . . . ∘ ℰ𝑦1)(𝑍)) . (F23)

This follows from the identities |0⟩⟨0| = (𝐼+𝑍)/2, |1⟩⟨1| = (𝐼−𝑍)/2. The probability that we obtain 1
as the experimental outcome is equal to one minus the probability for obtaining 0,

1

2
− 1

2
tr (𝑍(ℰ𝑦𝐿 ∘ . . . ∘ ℰ𝑦1)(𝑍)) . (F24)
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The actions of ℰℎ and ℰ𝑡 on Pauli operators are now useful to understand the term
tr (𝑍(ℰ𝑦𝐿 ∘ . . . ∘ ℰ𝑦1)(𝑍)).

F.4.a. Experiments as multiple particles traversing a graph

We represent the action of the three unitaries 𝐻,𝑆, 𝑇 on the three Pauli operators 𝑋,𝑌, 𝑍 as a
small graph with three nodes corresponding to 𝑋,𝑌, 𝑍. We can consider each experiment as particles
traversing the graph. At the start of the experiment, a single particle resides on the node 𝑍 with an
initial value of 1. Applying ℰℎ corresponds to moving the particle from 𝑍 → 𝑋,𝑌 → 𝑌,𝑋 → 𝑍, and
the value of the particle will be multiplied by 𝜆ℎ𝑋 ,−𝜆ℎ𝑌 , 𝜆ℎ𝑍 accordingly. Applying ℰ𝑠 corresponds to
moving the particle from 𝑌 → 𝑋,𝑋 → 𝑌,𝑍 → 𝑍, and the value of the particle will be multiplied
by −𝜆𝑠𝑋 , 𝜆𝑠𝑌 , 𝜆𝑠𝑍 accordingly. Applying ℰ𝑡 corresponds to a more complicated action. If the particle
resides on 𝑋, then the particle will split into two particles: one on 𝑋 and one on 𝑌 . The value of
the duplicated particle on 𝑋 and 𝑌 will be equal to the value of the original particle multiplied by
1√
2
𝜆𝑡𝑋 and 1√

2
𝜆𝑡𝑌 accordingly. Similarly, if the particle resides on 𝑌 , the particle will split into two

particles on 𝑋 and 𝑌 . The value of the duplicated particle on 𝑋 and 𝑌 will be equal to the value of
the original particle multiplied by − 1√

2
𝜆𝑡𝑋 and 1√

2
𝜆𝑡𝑌 accordingly. If the particle resides on 𝑍, then the

particle will stay at 𝑍, and the value of the particle will be multiplied by 𝜆𝑡𝑍 . After many application
of the CPTP maps ℰ𝑦, there will be many particles moving on the three-node graph. The number of
particles is exponential in the number of 𝑇 gates applied. At the end of the experiment, we sum up
the values of particles residing at 𝑍 to obtain tr (𝑍(ℰ𝑦𝐿 ∘ . . . ∘ ℰ𝑦1)(𝑍)).

F.4.b. Polynomial forms and unlearnability

By induction, we can show that the value of each particle residing at 𝑋,𝑌, 𝑍 can be written as

𝜆ℎ𝑋(𝜆
ℎ
𝑍𝜆

ℎ
𝑋)

𝑘𝑋 · 𝑓𝑋(𝜆ℎ𝑌 , 𝜆𝑠𝑋 , 𝜆𝑠𝑌 , 𝜆𝑠𝑍 , 𝜆𝑡𝑋 , 𝜆𝑡𝑌 , 𝜆𝑡𝑍), (F25)

𝜆ℎ𝑋(𝜆
ℎ
𝑍𝜆

ℎ
𝑋)

𝑘𝑌 · 𝑓𝑌 (𝜆ℎ𝑌 , 𝜆𝑠𝑋 , 𝜆𝑠𝑌 , 𝜆𝑠𝑍 , 𝜆𝑡𝑋 , 𝜆𝑡𝑌 , 𝜆𝑡𝑍), (F26)

(𝜆ℎ𝑍𝜆
ℎ
𝑋)

𝑘𝑍 · 𝑓𝑍(𝜆ℎ𝑌 , 𝜆𝑠𝑋 , 𝜆𝑠𝑌 , 𝜆𝑠𝑍 , 𝜆𝑡𝑋 , 𝜆𝑡𝑌 , 𝜆𝑡𝑍), (F27)

accordingly, where 𝑘𝑋 , 𝑘𝑌 , 𝑘𝑍 are non-negative integers, 𝑓𝑋 , 𝑓𝑌 , 𝑓𝑍 are monomials. We perform in-
duction according to the dynamics of the particles from the start of the experiment to finish. In the
base case, there are only one particle residing at 𝑍 with a value of 1, hence the claimed statement
holds. For each induction step, the traversal/duplication rules guarantee that the above form of values
is preserved. At the end of the experiment, when we sum up the values of particles residing at 𝑍, we
have the following form for the 𝑍 expectation value,

tr (𝑍(ℰ𝑦𝐿 ∘ . . . ∘ ℰ𝑦1)(𝑍)) =
∑︁
𝑘

(𝜆ℎ𝑍𝜆
ℎ
𝑋)

𝑘𝑓𝑘(𝜆
ℎ
𝑌 , 𝜆

𝑠
𝑋 , 𝜆

𝑠
𝑌 , 𝜆

𝑠
𝑍 , 𝜆

𝑡
𝑋 , 𝜆

𝑡
𝑌 , 𝜆

𝑡
𝑍) (F28)

= 𝑝(𝜆ℎ𝑍𝜆
ℎ
𝑋 , 𝜆

ℎ
𝑌 , 𝜆

𝑠
𝑋 , 𝜆

𝑠
𝑌 , 𝜆

𝑠
𝑍 , 𝜆

𝑡
𝑋 , 𝜆

𝑡
𝑌 , 𝜆

𝑡
𝑍), (F29)

where 𝑘 sums over non-negative integers, 𝑓𝑘 is a monomial, 𝑝 is a polynomial. Together,
we can see that the probability for every experimental outcome is a polynomial function in
𝜆ℎ𝑍𝜆

ℎ
𝑋 , 𝜆

ℎ
𝑌 , 𝜆

𝑠
𝑋 , 𝜆

𝑠
𝑌 , 𝜆

𝑠
𝑍 , 𝜆

𝑡
𝑋 , 𝜆

𝑡
𝑌 , 𝜆

𝑡
𝑍 . Hence, when two world models have the same 𝜆ℎ𝑍𝜆

ℎ
𝑋 and the other

𝜆’s are also equal, the two world models are weakly indistinguishable.
We now show the existence of two distinct world models that are weakly indistinguishable even

under the constraint that the noise is small. Recall some basic properties of Pauli channels [42]:

𝒫(𝜌) = 𝑝𝐼𝜌+ 𝑝𝑋𝑋𝜌𝑋 + 𝑝𝑌 𝑌 𝜌𝑌 + 𝑝𝑍𝑍𝜌𝑍, (F30)

=
1

2
(tr(𝜌)𝐼 + 𝜆𝑋 tr(𝑋𝜌)𝑋 + 𝜆𝑌 tr(𝑌 𝜌)𝑌 + 𝜆𝑍 tr(𝑍𝜌)𝑍) , (F31)
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⃦⃦
𝒫 − 𝒫 ′⃦⃦

◇ = |𝑝𝐼 − 𝑝
′
𝐼 |+ |𝑝𝑋 − 𝑝′𝑋 |+ |𝑝𝑌 − 𝑝′𝑌 |+ |𝑝𝑍 − 𝑝′𝑍 |, (F32)

where (𝑝𝐼 , 𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍) is a probability distribution, 𝜆𝑋 = 1 − 2𝑝𝑌 − 2𝑝𝑍 , 𝜆𝑌 = 1 − 2𝑝𝑋 − 2𝑝𝑍 , 𝜆𝑍 =
1 − 2𝑝𝑋 − 2𝑝𝑌 , and 𝒫,𝒫 ′ are two Pauli channels. Each world model in 𝒬̃𝜖 is specified by
𝜆ℎ𝑋 , 𝜆

ℎ
𝑌 , 𝜆

ℎ
𝑍 , 𝜆

𝑠
𝑋 , 𝜆

𝑠
𝑌 , 𝜆

𝑠
𝑍 , 𝜆

𝑡
𝑋 , 𝜆

𝑡
𝑌 , 𝜆

𝑡
𝑍 , or equivalently 𝑝ℎ𝑋 , 𝑝

ℎ
𝑌 , 𝑝

ℎ
𝑍 , 𝑝

𝑠
𝑋 , 𝑝

𝑠
𝑌 , 𝑝

𝑠
𝑍 , 𝑝

𝑡
𝑋 , 𝑝

𝑡
𝑌 , 𝑝

𝑡
𝑍 as 𝑝𝐼 = 1− 𝑝𝑋 −

𝑝𝑌 − 𝑝𝑍 . We consider two world models 𝒲𝐴,𝒲𝐵 in 𝒬̃𝜖 to be defined by

𝑝ℎ,𝐴𝑋 = 0, 𝑝ℎ,𝐴𝑍 = 𝜖, 𝑝ℎ,𝐴𝑌 = 𝑝𝑠,𝐴𝑋 = 𝑝𝑠,𝐴𝑌 = 𝑝𝑠,𝐴𝑍 = 𝑝𝑡,𝐴𝑋 = 𝑝𝑡,𝐴𝑌 = 𝑝𝑡,𝐴𝑍 = 0, (F33)

𝑝ℎ,𝐵𝑋 = 𝜖, 𝑝ℎ,𝐵𝑍 = 0, 𝑝ℎ,𝐵𝑌 = 𝑝𝑠,𝐵𝑋 = 𝑝𝑠,𝐵𝑌 = 𝑝𝑠,𝐵𝑍 = 𝑝𝑡,𝐵𝑋 = 𝑝𝑡,𝐵𝑌 = 𝑝𝑡,𝐵𝑍 = 0. (F34)

The two world models correspond to having 𝑍-error or having 𝑋-error after Hadamard gate. Using
the basic properties, it is not hard to check that both𝒲𝐴,𝒲𝐵 belong to 𝒬̃𝜖. Furthermore, 𝜆ℎ,𝐴𝑋 𝜆ℎ,𝐴𝑍 =

𝜆ℎ,𝐵𝑋 𝜆ℎ,𝐵𝑍 , and all other 𝜆’s are equal. Because the two world models are distinct, using a similar proof
as in Appendix F.2, we can show that𝒲𝐴 ̸≡ 𝒲𝐵, i.e., no unitary or anti-unitary transformation exists
that relates 𝒲𝐴 and 𝒲𝐵. Hence, 𝒲𝐴,𝒲𝐵 are two world models that are weakly indistinguishable
but are not equivalent. Using Proposition E.2, we conclude that 𝒬̃𝜖 is unlearnable.

F.5. Unlearnability of simple model class implies unlearnability of target model class

We are now ready to prove Theorem F.1, i.e., the model class 𝒬𝜖 is unlearnable. The basic structure
of the proof is the following. We first utilize the equivalence of learnability after adding some actions,
stated in Proposition E.3, E.4, and E.6, to show that a model class ℛ𝜖, which is a subset of 𝒬𝜖, is
unlearnable. Then, we can the monotonicity of unlearnability, stated in Proposition E.1, to show that
𝒬𝜖 is unlearnable because ℛ𝜖 ⊆ 𝒬𝜖 is unlearnable.

F.5.a. Composing all Clifford gates

We begin with the equivalence of learnability after adding composite CPTP maps stated in Propo-
sition E.4. We will compose the two actions ℎ, 𝑠 ∈ 𝒴 = {ℎ, 𝑠, 𝑡}, which corresponds to Hadamard and
phase gate subject to gate-dependent Pauli noise; see ℰℎ and ℰ𝑠 in Equation (F16) and (F17). Because
Hadamard and phase gates form a universal gate set for the Clifford group, we can construct any
Clifford unitary 𝐶 from a composition of Hadamard gate 𝐻 and phase gate 𝑆. Let 𝐿* be the required
sequence length to generate every element in the Clifford unitary group. For any Clifford unitary 𝐶,
we know that 𝑓𝐶(𝑃 ) = 𝐶𝑃𝐶† is equal to a Pauli operator (up to a phase of ±1) for any Pauli operator
𝑃 ∈ {𝑋,𝑌, 𝑍}. Furthermore, up to the phase, 𝑓𝐶 is a permutation function over {𝑋,𝑌, 𝑍}. Hence,
for any Clifford unitary 𝐶, Pauli channel 𝒫, and quantum state 𝜌,

𝐶𝒫(𝜌)𝐶† = 𝒬(𝐶𝜌𝐶†), (F35)

where 𝒬 is a different Pauli channel satisfying ‖𝒬 − ℐ‖◇ = ‖𝒫 − ℐ‖◇.
Now, we compose new CPTP maps based on the model class 𝒬̃𝜖* , where 𝜖* will be chosen to be

small enough later. The consideration of 𝜖* is needed to ensure that all physical operations have a
small enough error. Consider a world model 𝒲 =

(︁
{𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵

)︁
in 𝒬̃𝜖* . For every

Clifford unitary 𝐶, there exists 𝑦1, . . . , 𝑦𝐿 ∈ {ℎ, 𝑠} with 𝐿 ≤ 𝐿*, such that the composition of the
Hadamard and phase gate generates the Clifford unitary 𝐶. Using the commutation relation between
Pauli channel and Clifford unitary in Equation (F35) shows that

(ℰ𝑦𝐿 ∘ . . . ∘ ℰ𝑦1)(𝜌) = (𝒬𝐿 ∘ . . . ∘ 𝒬1)(𝐶𝜌𝐶
†), (F36)

where 𝒬1, . . . ,𝒬𝐿 are Pauli channels, and ‖𝒬ℓ − ℐ‖ ≤ 𝜖*, ∀ℓ ∈ {1, . . . , 𝐿}. It is not hard to check that
the composition of Pauli channel is still a Pauli channel, hence (𝒬𝐿 ∘ . . .∘𝒬1) is a Pauli channel. Using
telescoping sum and triangle inequality, we have

‖𝒬𝐿 ∘ . . . ∘ 𝒬1 − ℐ‖◇ ≤ ‖(𝒬𝐿 − ℐ) ∘ 𝒬𝐿−1 ∘ . . . ∘ 𝒬1‖◇ + ‖(𝒬𝐿−1 ∘ . . . ∘ 𝒬1)− ℐ‖◇ (F37)
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≤ ‖𝒬𝐿 − ℐ‖◇ + ‖(𝒬𝐿−1 ∘ . . . ∘ 𝒬1)− ℐ‖◇ (F38)
≤ 𝜖* + ‖(𝒬𝐿−1 ∘ . . . ∘ 𝒬1)− ℐ‖◇ (F39)
≤ 2𝜖* + ‖(𝒬𝐿−2 ∘ . . . ∘ 𝒬1)− ℐ‖◇ ≤ . . . ≤ 𝐿𝜖* ≤ 𝐿*𝜖*. (F40)

We add in a new action for each element in the Clifford group excluding Hadamard and phase gate
𝐻,𝑆. After adding these new actions, our action space for CPTP maps has expanded from 𝒴 =
{ℎ, 𝑠, 𝑡} to 𝒴 = 𝒞 ∪ {𝑇}, a union of the Clifford group and the T gate {𝑇}. We call the new model
class with these additional CPTP maps ℛ̃𝜖* . From Proposition E.4, we know that adding these new
actions do not affect the learnability. Hence ℛ̃𝜖* is unlearnable. To recap, ℛ̃𝜖* is a model class over
𝒳 = {0},𝒴 = {𝑦𝑈}𝑈∈𝒞∪{𝑇},𝒵 = {0},ℬ = {0, 1}, where 𝒞 is the Clifford group. Every world model
𝒲 =

(︀
{𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵

)︀
in ℛ̃𝜖* satisfies the following condition,

𝜌0 = |0⟩⟨0|, (F41)

ℰ𝑦𝑈 (𝜌) = 𝒫𝑈 (𝑈𝜌𝑈 †), ‖𝒫𝑈 − ℐ‖◇ ≤ 𝐿*𝜖*, ∀𝑈 ∈ 𝒞 ∪ {𝑇}, (F42)
ℳ0 = {|0⟩⟨0|, |1⟩⟨1|}, (F43)

where 𝒫𝑈 ,∀𝑈 ∈ 𝒞 ∪ {𝑇} are Pauli channels. However, ℛ̃𝜖* does not contain all the world models that
satisfy the above conditions.

Remark 2. The same argument works if we add in any unitary rotation about the 𝑍-axis, i.e., any
matrix diagonal in the computational basis. Under the 𝑍-axis rotation, each particle on the 𝑋 and
𝑌 node split into two particles on 𝑋 and 𝑌 , and particles on the 𝑍 node stay at the 𝑍 node. The
polynomial forms would still be degenerate when we add an arbitrary number of unitary rotation
about the 𝑍-axis. Therefore the gate-dependent Pauli noise is still unlearnable with Hadamard gate,
phase gate, and an arbitrary number of unitary rotation about the 𝑍-axis.

F.5.b. Composing all quantum states

The next step in the proof is to use the equivalence of learnability after adding composite initial
states and adding mixture of initial states given in Proposition E.3 and E.6. We compose the zero
initial state |0⟩⟨0| with the Clifford+T gates to generate all pure states up to some small errors. Then,
we can add mixture of the pure states to generate all quantum states up to some small errors. We
consider 𝐿𝑠 to be the minimum integer such that for all pure states |𝜓⟩, there exists a sequence
𝑈1, . . . , 𝑈ℓ consisting of Clifford gates and T gate with ℓ ≤ 𝐿𝑠 and⃦⃦⃦

|𝜓⟩⟨𝜓| − (𝑈ℓ . . . 𝑈1)|0⟩⟨0|(𝑈1 . . . 𝑈ℓ)
†
⃦⃦⃦
1
≤ 𝜖/2. (F44)

From Solovay-Kitaev theorem [13] and follow-up works [25, 43], 𝐿𝑠 = 𝒪(log(1/𝜖)). From Propo-
sition E.3, the model class with the additional states is constructed by specifying the set of addi-
tional actions Ξ, a constant 𝐿, and a function 𝑓 with 𝑓(𝜉) = (𝑥, 𝑦1, . . . , 𝑦ℓ). Here, we consider
Ξ = {|𝜓⟩}|𝜓⟩:pure state to be the space of all pure states, 𝐿 = 𝐿𝑠, and we define 𝑓 to map a pure
state |𝜓⟩ to (0, 𝑦𝑈1 , . . . , 𝑦𝑈ℓ

), where 𝑈1, . . . , 𝑈ℓ are the unitaries for approximating the pure state |𝜓⟩
according to Eq. (F44). For every world model 𝒲 =

(︀
{𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵

)︀
in ℛ̃𝜖* , we have⃦⃦⃦

|𝜓⟩⟨𝜓| − (ℰ𝑦𝑈ℓ
∘ . . . ∘ ℰ𝑦𝑈1

)(|0⟩⟨0|)
⃦⃦⃦
1
≤
⃦⃦⃦
|𝜓⟩⟨𝜓| − (𝑈ℓ . . . 𝑈1)|0⟩⟨0|(𝑈1 . . . 𝑈ℓ)

†
⃦⃦⃦
1

(F45)

+
⃦⃦⃦
(ℰ𝑦𝑈ℓ

∘ . . . ∘ ℰ𝑦𝑈1
)(|0⟩⟨0|)− (𝑈ℓ . . . 𝑈1)|0⟩⟨0|(𝑈1 . . . 𝑈ℓ)

†
⃦⃦⃦
1

(F46)

≤ 𝜖/2 + ℓ𝐿*𝜖* ≤ 𝜖/2 + 𝐿𝑠𝐿*𝜖*, (F47)

where the second-to-last inequality uses Eq. (F44), telescoping sum, and triangle inequality, and
the last inequality uses ℓ ≤ 𝐿𝑠. We have now added actions associated to generating arbitrary
pure states. Proposition E.3 shows that adding these pure states will maintain the unlearnability.
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Now, for all mixed states, we only need to make use of the fact that any mixed state 𝜌 can be
written as 𝜌 = 𝑝|𝜓⟩⟨𝜓| + (1 − 𝑝)|𝜑⟩⟨𝜑| for some 0 < 𝑝 < 1 and two orthogonal pure states |𝜓⟩ , |𝜑⟩.
Suppose 𝑦𝑈1 , . . . , 𝑦𝑈ℓ

specifies the unitaries to approximate |𝜓⟩ and 𝑦′𝑈1
, . . . , 𝑦′𝑈ℓ′

specifies the unitaries
to approximate |𝜑⟩. Then by triangle inequality and Eq. (F47),⃦⃦⃦

𝜌−
[︁
𝑝(ℰ𝑦𝑈ℓ

∘ . . . ∘ ℰ𝑦𝑈1
)(|0⟩⟨0|) + (1− 𝑝)(ℰ𝑦′𝑈ℓ′

∘ . . . ∘ ℰ𝑦′𝑈1
)(|0⟩⟨0|)

]︁⃦⃦⃦
1
≤ 𝜖/2 + 𝐿𝑠𝐿*𝜖*. (F48)

Using Proposition E.6, we can add all the mixed states without altering the unlearnability. We have
now create a model class ℛ𝜖* over 𝒳 = {𝑥𝜎}𝜎:state,𝒴 = {𝑦𝑈}𝑈∈𝒞∪{𝑇},𝒵 = {0},ℬ = {0, 1}, where 𝒞 is
the Clifford group. Every world model 𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵) in ℛ𝜖* satisfies

‖𝜌𝑥𝜎 − 𝜎‖1 ≤ 𝜖/2 + 𝐿𝑠𝐿*𝜖*, ∀𝜎 : state, (F49)
𝜌𝑥|0⟩⟨0| = |0⟩⟨0|, (F50)

ℰ𝑦𝑈 (𝜌) = 𝒫𝑈 (𝑈𝜌𝑈 †), ‖𝒫𝑈 − ℐ‖◇ ≤ 𝐿*𝜖*, ∀𝑈 ∈ 𝒞 ∪ {𝑇}, (F51)
ℳ0 = {|0⟩⟨0|, |1⟩⟨1|}. (F52)

Furthermore, from the fact that ℛ̃𝜖* is unlearnable, and Proposition E.3 and E.6, we have ℛ𝜖* is
unlearnable. Now, if we choose 𝜖* = 𝜖/(2𝐿𝑠𝐿*), then every world model in ℛ𝜖* is in 𝒬𝜖. Hence, using
monotonicity of learnability in Proposition E.1, we have 𝒬𝜖 is unlearnable. This concludes the proof
of Theorem F.1 by recalling the equivalence of Theorem F.1 and the unlearnability of 𝒬𝜖.
Remark 3. By tracing through the proof, one can see that the unavoidable noise floor for learning the
gate-dependent Pauli noise channel is 𝜖*, which is of order 𝜖/ log(1/𝜖).

G. Noise and unlearnability

We give two examples of unlearnable model classes. Consider 𝑑-dimensional quantum worlds. We
focus on the action spaces 𝒳 = {𝜎}𝜎:state,𝒴 = {𝑈}𝑈∈SU(𝑑),𝒵 = {0}. Consider 𝜖 > 0 and the model
class 𝒮𝜖 over 𝒳 ,𝒴,𝒵 that consists of two world models 𝒲𝐴 =

(︀
{𝜌𝐴𝑥 }𝑥∈𝒳 , {ℰ𝐴𝑦 }𝑦∈𝒴 , {ℳ𝐴

𝑧 }𝑧∈𝒵
)︀
, where

𝜌𝐴𝜎 = (1− 𝜖)𝜎 + 𝜖
𝐼

𝑑
, ∀𝜎 : state, (G1)

ℰ𝐴𝑈 (𝜌) = 𝑈𝜌𝑈 †, ∀𝑈 ∈ SU(𝑑), (G2)

ℳ𝐴
0 = {|𝑏⟩⟨𝑏|}𝑏=1,...,𝑑 , (G3)

and 𝒲𝐵 =
(︀
{𝜌𝐵𝑥 }𝑥∈𝒳 , {ℰ𝐵𝑦 }𝑦∈𝒴 , {ℳ𝐵

𝑧 }𝑧∈𝒵
)︀
, where

𝜌𝐵𝜎 = 𝜎, ∀𝜎 : state, (G4)

ℰ𝐵𝑈 (𝜌) = 𝑈𝜌𝑈 †, ∀𝑈 ∈ SU(𝑑), (G5)

ℳ𝐵
0 =

{︂
(1− 𝜖)|𝑏⟩⟨𝑏|+ 𝜖

𝐼

𝑑

}︂
𝑏=1,...,𝑑

, (G6)

Verbally, the model class 𝒮𝜖 considers world models where we have perfect unitaries, but the initial
state or the computational basis measurement is subject to a depolarization noise of strength 𝜖.

We also consider another model class 𝒮Ω that encompasses world models where there are noises
in states, unitaries, and the computational basis measurement. Formally, 𝒮Ω is over the same set of
action spaces 𝒳 = {𝜎}𝜎:state,𝒴 = {𝑈}𝑈∈SU(𝑑),𝒵 = {0}. And 𝒮Ω contains all world models 𝒲 =
({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵), where 𝜌𝑥 is a quantum state, ℰ𝑦 is a CPTP map, andℳ𝑧 is a POVM.
It is not hard to see that 𝒮𝜖 ⊂ 𝒮Ω. Hence, the two world models 𝒲𝐴,𝒲𝐵 are also in 𝒮Ω.

We will now begin to provide a formal proof showing that 𝒮𝜖 is unlearnable. For any experiments
𝐸 = (𝜎, 𝑈1, . . . , 𝑈ℓ, 0), where 𝜎 ∈ 𝒳 , 𝑈1, . . . , 𝑈ℓ ∈ 𝒴, 0 ∈ 𝒵, we have

tr
(︀
𝑀𝐴

0𝑏(ℰ𝐴𝑈ℓ
∘ . . . ∘ ℰ𝐴𝑈1

)(𝜌𝐴𝜎 )
)︀
= (1− 𝜖) ⟨𝑏|𝑈ℓ . . . 𝑈1𝜎𝑈

†
1 . . . 𝑈

†
ℓ |𝑏⟩+

𝜖

𝑑
, ∀𝑏 ∈ {1, . . . , 𝑑}, (G7)
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tr
(︀
𝑀𝐵

0𝑏(ℰ𝐵𝑈ℓ
∘ . . . ∘ ℰ𝐵𝑈1

)(𝜌𝐵𝜎 )
)︀
= (1− 𝜖) ⟨𝑏|𝑈ℓ . . . 𝑈1𝜎𝑈

†
1 . . . 𝑈

†
ℓ |𝑏⟩+

𝜖

𝑑
, ∀𝑏 ∈ {1, . . . , 𝑑}. (G8)

Hence the two world models are weakly indistinguishable. It is also easy to check that the two
world models are not equivalent to one another, hence they describe different physical realities. By
Theorem A.8, if the two world models are equivalent, then there exists a unitary or anti-unitary
transformation 𝑈 such that 𝜌𝐵𝜎 = 𝑈𝜌𝐴𝜎𝑈

−1 for any quantum state 𝜎. We can use this relation to
deduce that tr((𝜌𝐵𝜎 )2) = tr((𝜌𝐴𝜎 )

2), i.e., the purity of the two states 𝜌𝐴𝜎 , 𝜌𝐵𝜎 must be equal, for all state
𝜎. However, for 𝜖 > 0 and pure state 𝜎 = |𝜓⟩⟨𝜓|, the purity of 𝜌𝐴𝜎 is less than one, but the purity of
𝜌𝐵𝜎 is one. Hence, the two world models 𝒲𝐴,𝒲𝐵 are not equivalent.

Because 𝒮𝜖 contains two weakly indistinguishable world models that are not equivalent to one
another, 𝒮𝜖 is unlearnable according to Proposition E.2. Then using Proposition E.1, the monotonicity
of unlearnability, 𝒮Ω is unlearnable because 𝒮𝜖 ⊂ 𝒮Ω.

H. Learning under gate-independent noise on Clifford gates

We give the detailed proof for Theorem 5 in this appendix.

H.1. Review on unitary design for Clifford gates

We recall the following well-known fact on the unitary design property for Clifford gates. These
two properties will be used through the design and proof of the algorithm. Furthermore, we will be
using a substantial amount of tensor network manipulation, where only the final simplified results are
shown. Readers unfamiliar with tensor network manipulations could refer to reviews in [6, 9].

Lemma H.1 (Unitary design for Clifford gates [11, 49, 52]). Consider 𝑛 > 0 to be the number qubits.
Let 𝒞 be the set of all Clifford gates over 𝑛 qubits and let 𝑑 = 2𝑛. We have

1

|𝒞|
∑︁
𝐶∈𝒞

𝐶𝐴𝐶† =
𝐼

𝑑
tr(𝐴), (1-design) (H1)

1

|𝒞|
∑︁
𝐶∈𝒞

𝐶⊗2𝐵(𝐶†)⊗2 =
1

𝑑2 − 1

(︂
𝐼 tr(𝐵) + 𝑆 tr(𝑆𝐵)− 1

𝑑
𝑆 tr(𝐵)− 1

𝑑
𝐼 tr(𝑆𝐵)

)︂
, (2-design) (H2)

where 𝐴 is an 2𝑛× 2𝑛 complex matrix, 𝐵 is a complex tensor living in the tensor product space of two
2𝑛 × 2𝑛 complex matrices, 𝑆 is the swap operator over the two tensor product components.

H.2. Learning noisy zero state, Clifford gate noise, and noisy basis measurement

Two sets of randomized experiments are conducted to learn about the noisy initial state 𝜌0 ≈
|0𝑛⟩⟨0𝑛|, the Clifford gate noise 𝒩 ≈ ℐ, and the noisy computational basis measurement ℳ0 =
{𝑀𝑏}𝑏∈{0,1}𝑛 with 𝑀𝑏 ≈ |𝑏⟩⟨𝑏|. The first set of 𝑁𝐴 experiments prepares 𝜌0, evolves by ℰ𝐶 for a
random Clifford 𝐶, and measuresℳ0. The second set of 𝑁𝐵 experiments prepares 𝜌0, evolves by ℰ𝐶1

for a random Clifford 𝐶1, evolves by ℰ𝐶2 for a second random Clifford 𝐶2, and measures ℳ0. We
denote the two sets of experimental outcomes as(︁

𝐶(𝐴,𝑖), 𝑏(𝐴,𝑖) ∈ {0, 1}𝑛
)︁
, ∀𝑖 = 1, . . . , 𝑁𝐴, (H3)(︁

𝐶
(𝐵,𝑖)
1 , 𝐶

(𝐵,𝑖)
2 , 𝑏(𝐵,𝑖) ∈ {0, 1}𝑛

)︁
, ∀𝑖 = 1, . . . , 𝑁𝐵. (H4)

We will also define the POVM ℳ′ = {𝑀 ′
𝑏 = 𝒩 †(𝑀𝑏)}𝑏∈{0,1}𝑛 which is equivalent to applying the

Clifford gate noise 𝒩 followed by measuring the noisy computational basis measurementℳ0.
In the following, we will denote 𝑑 = 2𝑛, 𝑓 = ⟨0𝑛| 𝜌0 |0𝑛⟩, 𝑔 = 1

𝑑

∑︀
𝑏∈{0,1}𝑛 ⟨𝑏|𝑀 ′

𝑏 |𝑏⟩, I[𝐴] to be the
indicator function, i.e., I[𝐴] = 1 if 𝐴 is true and I[𝐴] = 0 if 𝐴 is false. Because 𝑓 is unlearnable, we
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can set 𝑓 to whatever value we want. One practical choice is to set 𝑓 = 1 since 𝜌0 ≈ |0𝑛⟩⟨0𝑛|. Under
the assumption that 𝜌0 ≈ |0𝑛⟩⟨0𝑛| and 𝑀 ′

𝑏 = 𝒩 †(𝑀𝑏) ≈𝑀𝑏 ≈ |𝑏⟩⟨𝑏|, we can consider

𝑓 = ⟨0𝑛| 𝜌0 |0𝑛⟩ ∈ [0.9, 1], ⟨𝑏|𝑀 ′
𝑏 |𝑏⟩ ∈ [0.9, 1.1], 𝑔 =

1

𝑑

∑︁
𝑏∈{0,1}𝑛

⟨𝑏|𝑀 ′
𝑏 |𝑏⟩ ∈ [0.9, 1.1]. (H5)

This follows from the fact that the noise is bounded.

H.2.a. Learning noisy basis measurement conflated with Clifford gate noise

We now construct various estimators that characterizes the POVM ℳ′ = {𝑀 ′
𝑏}𝑏∈{0,1}𝑛 . We start

with the simplest estimator,

t̂r(𝑀 ′
𝑏) =

1

𝑁𝐴

𝑁𝐴∑︁
𝑖=1

𝑑 I
[︁
𝑏(𝐴,𝑖) = 𝑏

]︁
. (H6)

Using unitary 1-design property of Clifford gates, we have

E
[︁
t̂r(𝑀 ′

𝑏)
]︁
=

1

|𝒞|
∑︁
𝐶∈𝒞

𝑑 tr
(︁
𝑀 ′
𝑏𝐶𝜌0𝐶

†
)︁
= tr(𝑀 ′

𝑏). (H7)

Hence, we can estimate tr(𝑀 ′
𝑏) to arbitrarily small error with large enough 𝑁𝐴. The next estimator is

slightly more complicated and uses t̂r(𝑀 ′
𝑏),

̂︁𝑀 ′
𝑏 =

𝑑2 − 1

𝑓 − 1
𝑑

[︃
1

𝑁𝐴

𝑁𝐴∑︁
𝑖=1

I
[︁
𝑏(𝐴,𝑖) = 𝑏

]︁
𝐶(𝐴,𝑖)|0𝑛⟩⟨0𝑛|(𝐶(𝐴,𝑖))†

]︃
− 1− 𝑓

𝑑

𝑓 − 1
𝑑

t̂r(𝑀 ′
𝑏)𝐼. (H8)

Using unitary 2-design property of Clifford gates, we have

E
[︁̂︁𝑀 ′

𝑏

]︁
=

1

|𝒞|
∑︁
𝐶∈𝒞

𝑑2 − 1

𝑓 − 1
𝑑

tr(𝑀 ′
𝑏𝐶𝜌0𝐶

†)𝐶|0𝑛⟩⟨0𝑛|𝐶† − 1− 𝑓
𝑑

𝑓 − 1
𝑑

tr(𝑀 ′
𝑏)𝐼 =𝑀 ′

𝑏. (H9)

Hence, we can estimate the POVM element 𝑀 ′
𝑏 to arbitrarily small error with large enough 𝑁𝐴.

We will also utilize the following estimator to estimate 𝑔 = 1
𝑑

∑︀
𝑏∈{0,1}𝑛 ⟨𝑏|𝑀 ′

𝑏 |𝑏⟩.

̂︀𝑔 =
1

𝑑

∑︁
𝑏∈{0,1}𝑛

⟨𝑏| ̂︁𝑀 ′
𝑏 |𝑏⟩ =

𝑑2 − 1

𝑑𝑓 − 1

[︃
1

𝑁𝐴

𝑁𝐴∑︁
𝑖=1

⟨𝑏(𝐴,𝑖)|𝐶(𝐴,𝑖)|0𝑛⟩⟨0𝑛|(𝐶(𝐴,𝑖))† |𝑏(𝐴,𝑖)⟩
]︃
− 𝑑− 𝑓
𝑑𝑓 − 1

. (H10)

The second equality follows from
∑︀

𝑏∈{0,1}𝑛 t̂r(𝑀
′
𝑏) = 𝑑. From the equality in Eq. (H9) and linearity

of expectation, we have

E [̂︀𝑔] = 1

𝑑

∑︁
𝑏∈{0,1}𝑛

⟨𝑏|𝑀 ′
𝑏 |𝑏⟩ = 𝑔. (H11)

Hence, we can estimate the scalar value 𝑔 to arbitrarily small error with large enough 𝑁𝐴.

H.2.b. Learning noisy zero state

If 𝑔 is perfectly known, then the estimator for 𝜌0 is given as follows.

̂︀𝜌0(𝑔*) = 𝑑2 − 1

𝑑𝑔 − 1

[︃
1

𝑁𝐴

𝑁𝐴∑︁
𝑖=1

(𝐶(𝐴,𝑖))†|𝑏(𝐴,𝑖)⟩⟨𝑏(𝐴,𝑖)|𝐶(𝐴,𝑖)

]︃
− 𝑑− 𝑔

𝑑

𝑑𝑔 − 1
𝐼. (H12)
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Notice that in the noiseless setting (𝑔 = 1), the above estimator is exactly equal to the classical shadow
representation based on randomized Clifford measurements [29]. Using the unitary 2-design property
of Clifford gates, we have

E
[︁ ̂︀𝜌0(𝑔*)]︁ = 1

|𝒞|
∑︁
𝐶∈𝒞

𝑑2 − 1

𝑑𝑔 − 1
tr(𝑀 ′

𝑏𝐶𝜌0𝐶
†)𝐶†|𝑏⟩⟨𝑏|𝐶 − 𝑑− 𝑔

𝑑

𝑑𝑔 − 1
𝐼 = 𝜌0. (H13)

Hence, we can estimate 𝜌0 to arbitrarily small error with large enough 𝑁𝐴 when 𝑔 is perfectly known.
However, since 𝑔 is estimated using 𝑔, we will use the following estimator instead.

̂︀𝜌0 = 𝑑2 − 1

𝑑𝑔 − 1

[︃
1

𝑁𝐴

𝑁𝐴∑︁
𝑖=1

(𝐶(𝐴,𝑖))†|𝑏(𝐴,𝑖)⟩⟨𝑏(𝐴,𝑖)|𝐶(𝐴,𝑖)

]︃
− 𝑑− 𝑔

𝑑

𝑑𝑔 − 1
𝐼. (H14)

We use that fact that, with large enough 𝑁𝐴, 𝑔 can be made arbitrarily close to 𝑔. Because 𝑔 ∈ [0.9, 1.1]

from Eq. (H5), with large enough 𝑁𝐴, 𝑑
2−1
𝑑𝑔−1 and 𝑑− 𝑔

𝑑
𝑑𝑔−1 can be made arbitrarily close to 𝑑2−1

𝑑𝑔−1 and 𝑑− 𝑔
𝑑

𝑑𝑔−1 ,
respectively. Hence, with Eq. (H13), the estimator ̂︀𝜌0 can be made arbitrarily close to 𝜌0 with large
enough 𝑁𝐴.

H.2.c. Learning Clifford gate noise

So far, we have only used the first set of experiments. We are now ready to learn the Clifford gate
noise 𝒩 using the second set of experiments. We will use the Choi matrix representation of a quantum
channel. Recall that the Choi matrix of a channel 𝒩 is given by

Φ𝒩 ≡ (𝒩 ⊗ ℐ)(|𝜔⟩⟨𝜔|), (H15)

where |𝜔⟩ = 1√
𝑑

∑︀
𝑏∈{0,1}𝑛 |𝑏⟩ ⊗ |𝑏⟩ is the maximally entangled state over 2𝑛 qubits, ℐ is the identity

channel on 𝑛 qubits. We first estimate the state 𝒩 (𝐼/𝑑). The basic idea is to intentionally neglect
𝐶

(𝐵,𝑖)
1 in the data. Then 𝜌0 evolved under an unknown random Clifford gate 𝐶1 followed by the gate

noise 𝒩 is equal to the state 𝒩 (𝐼/𝑑) from the unitary 1-design property of random Clifford gate.
Then we can essentially use the same estimator as Eq. (H12) to learn the state 𝒩 (𝐼/𝑑). Assuming 𝑔
is known, then we can use the estimator,

𝒩 (𝐼/𝑑)
(𝑔*)

=
𝑑2 − 1

𝑑𝑔 − 1

[︃
1

𝑁𝐵

𝑁𝐵∑︁
𝑖=1

(𝐶
(𝐵,𝑖)
2 )†|𝑏(𝐵,𝑖)⟩⟨𝑏(𝐵,𝑖)|𝐶(𝐵,𝑖)

2

]︃
− 𝑑− 𝑔

𝑑

𝑑𝑔 − 1
𝐼. (H16)

From unitary 1-design and 2-design property, we have

E
[︂
𝒩 (𝐼/𝑑)

(𝑔*)
]︂
=

1

|𝒞|2
∑︁
𝐶1∈𝒞

∑︁
𝐶2∈𝒞

𝑑2 − 1

𝑑𝑔 − 1
tr(𝑀 ′

𝑏𝐶2𝒩 (𝐶1𝜌0𝐶
†
1)𝐶

†
2)𝐶

†
2|𝑏⟩⟨𝑏|𝐶2 −

𝑑− 𝑔
𝑑

𝑑𝑔 − 1
𝐼 (H17)

= 𝒩 (𝐼/𝑑). (H18)

Similar to learning 𝜌0, we only have an estimate for 𝑔 given by 𝑔. Hence, the estimator we will use is

𝒩 (𝐼/𝑑) =
𝑑2 − 1

𝑑𝑔 − 1

[︃
1

𝑁𝐵

𝑁𝐵∑︁
𝑖=1

(𝐶
(𝐵,𝑖)
2 )†|𝑏(𝐵,𝑖)⟩⟨𝑏(𝐵,𝑖)|𝐶(𝐵,𝑖)

2

]︃
− 𝑑− 𝑔

𝑑

𝑑𝑔 − 1
𝐼. (H19)

With large enough 𝑁𝐴, 𝑔 can be made arbitrarily close to 𝑔. So, from Eq (H18), the estimator 𝒩 (𝐼/𝑑)
can be made arbitrarily close to 𝒩 (𝐼/𝑑) with large enough 𝑁𝐴 and 𝑁𝐵.

We now present the estimator for the Choi matrix of 𝒩 . We will begin by assuming that 𝑔 is
perfectly known, then we will approximate 𝑔 by ̂︀𝑔. The estimator ̂︂Φ𝒩

(𝑔*)
is defined as

̂︂Φ𝒩
(𝑔*)

=
(𝑑2 − 1)2

(𝑑𝑓 − 1)(𝑑𝑔 − 1)

[︃
1

𝑁𝐵

𝑁𝐵∑︁
𝑖=1

(︁
(𝐶

(𝐵,𝑖)
2 )†|𝑏(𝐵,𝑖)⟩⟨𝑏(𝐵,𝑖)|𝐶(𝐵,𝑖)

2

)︁
⊗
(︁
𝐶

(𝐵,𝑖)
1 |0𝑛⟩⟨0𝑛|(𝐶(𝐵,𝑖)

1 )†
)︁𝑇]︃
(H20)
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− (𝑑− 1
𝑑)(𝑑− 𝑔)

(𝑑𝑓 − 1)(𝑑𝑔 − 1)
[𝐼 ⊗ 𝐼]− 1− 𝑓

𝑑

𝑓 − 1
𝑑

[︂
𝒩 (𝐼/𝑑)

(𝑔*)
⊗ 𝐼
]︂
. (H21)

Using unitary 2-design property of Clifford gates and Eq. (H18), we have

E
[︂̂︂Φ𝒩

(𝑔*)
]︂
=

1

|𝒞|2
∑︁
𝐶1∈𝒞

∑︁
𝐶2∈𝒞

(𝑑2 − 1)2

(𝑑𝑓 − 1)(𝑔 − 1)
tr(𝑀 ′

𝑏𝐶2𝒩 (𝐶1𝜌0𝐶
†
1)𝐶

†
2) (H22)

×
(︁
𝐶†
2|𝑏⟩⟨𝑏|𝐶2

)︁
⊗
(︁
𝐶1|0𝑛⟩⟨0𝑛|𝐶†

1

)︁𝑇
(H23)

− (𝑑− 1
𝑑)(1−

𝑔
𝑑2
)

(𝑑𝑓 − 1)(𝑔 − 1)
𝐼 ⊗ 𝐼 − 1− 𝑓

𝑑

𝑓 − 1
𝑑

𝒩 (𝐼/𝑑)⊗ 𝐼 (H24)

= Φ𝒩 . (H25)

Similar to before, we only have an estimate for 𝑔 given by 𝑔, so we will instead use the following

estimator, i.e., replacing all 𝑔 by 𝑔 and 𝒩 (𝐼/𝑑)
(𝑔*)

by 𝒩 (𝐼/𝑑).

̂︂Φ𝒩 =
(𝑑2 − 1)2

(𝑑𝑓 − 1)(𝑑𝑔 − 1)

[︃
1

𝑁𝐵

𝑁𝐵∑︁
𝑖=1

(︁
(𝐶

(𝐵,𝑖)
2 )†|𝑏(𝐵,𝑖)⟩⟨𝑏(𝐵,𝑖)|𝐶(𝐵,𝑖)

2

)︁
⊗
(︁
𝐶

(𝐵,𝑖)
1 |0𝑛⟩⟨0𝑛|(𝐶(𝐵,𝑖)

1 )†
)︁𝑇]︃

(H26)

− (𝑑− 1
𝑑)(𝑑− 𝑔)

(𝑑𝑓 − 1)(𝑑𝑔 − 1)
[𝐼 ⊗ 𝐼]− 1− 𝑓

𝑑

𝑓 − 1
𝑑

[︁
𝒩 (𝐼/𝑑)⊗ 𝐼

]︁
. (H27)

With large enough 𝑁𝐴, 𝑁𝐵, 𝑔 and 𝒩 (𝐼/𝑑) can be made arbitrarily close to 𝑔 and 𝒩 (𝐼/𝑑). So, from
Eq (H25), the estimator ̂︂Φ𝒩 can be made arbitrarily close to Φ𝒩 with large enough 𝑁𝐴 and 𝑁𝐵. With
the estimator for Choi matrix ̂︂Φ𝒩 , we can obtain the estimator ̂︀𝒩 for the original CPTP map 𝒩 by
applying the linear invertible transformation between Choi matrix and CPTP map.

H.2.d. Learning noisy basis measurement

After learning Φ𝒩 through the estimator ̂︂Φ𝒩 , we can obtain the noisy computational basis mea-
surementℳ0 = {𝑀𝑏}𝑏∈{0,1}𝑛 by considering the following estimator.

̂︁𝑀𝑏 =
(︁ ̂︀𝒩 †

)︁−1 ̂︁𝑀 ′
𝑏, ∀𝑏 ∈ {0, 1}𝑛. (H28)

Note that ̂︁𝑀 ′
𝑏 can be made arbitrarily close to 𝑀 ′

𝑏 = 𝒩 †(𝑀𝑏) and ̂︀𝒩 can be made arbitrarily close to

𝒩 . Because 𝒩 is assumed to be close to the identity, the difference between
(︁ ̂︀𝒩 †

)︁−1
and

(︀
𝒩 †)︀−1 can

be made arbitrarily small by increasing 𝑁𝐴, 𝑁𝐵. Hence, ̂︁𝑀𝑏 can be arbitrarily close to 𝑀𝑏 with large
enough 𝑁𝐴, 𝑁𝐵.

H.3. Learning any state, CPTP map, and POVM

After learning 𝜌0,𝒩 ,ℳ0, we present the learning of any physical operation in the system. The
procedures are very similar to the previous subsection.

H.3.a. Learning POVM

Given any POVM ℳ𝑧 = {𝑀𝑧𝑏}𝑏∈ℬ, where ℬ is a set denoting all the possible outcomes. We can
learn 𝑀𝑧𝑏 by conducting the following randomized experiments for 𝑁𝑧 times: prepare 𝜌0, evolve under
ℰ𝐶 for a random Clifford gate 𝐶, measureℳ𝑧. We denote the sets of experimental outcomes as(︁

𝐶(𝑧,𝑖), 𝑏(𝑧,𝑖) ∈ ℬ
)︁
, ∀𝑖 = 1, . . . , 𝑁𝑧. (H29)
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The procedure is very similar to that for learning ℳ0. First, we consider the POVM ℳ′
𝑧 = {𝑀 ′

𝑧𝑏 =
𝒩 †(𝑀𝑧𝑏)}𝑏∈ℬ, which conflatesℳ𝑧 with the Clifford gate noise𝒩 . We can learnℳ′

𝑧 using the following
estimators based on the data we obtained.

̂tr(𝑀 ′
𝑧𝑏) =

1

𝑁𝑧

𝑁𝑧∑︁
𝑖=1

𝑑 I
[︁
𝑏(𝑧,𝑖) = 𝑏

]︁
, (H30)

̂︂𝑀 ′
𝑧𝑏 =

𝑑2 − 1

𝑓 − 1
𝑑

[︃
1

𝑁𝑧

𝑁𝑧∑︁
𝑖=1

I
[︁
𝑏(𝑧,𝑖) = 𝑏

]︁
𝐶(𝑧,𝑖)|0𝑛⟩⟨0𝑛|(𝐶(𝑧,𝑖))†

]︃
− 1− 𝑓

𝑑

𝑓 − 1
𝑑

̂tr(𝑀 ′
𝑧𝑏)𝐼. (H31)

Using the same analysis as Appendix H.2.a, we can show that ̂︂𝑀 ′
𝑧𝑏 can be made arbitrarily close to

𝑀 ′
𝑧𝑏 with large enough 𝑁𝑧. Then similar to Appendix H.2.d, we can learn 𝑀𝑧𝑏 using the following

estimator after obtaining 𝒩̂ from the algorithms presented in Appendix H.2.c.

̂︂𝑀𝑧𝑏 =
(︁ ̂︀𝒩 †

)︁−1 ̂︂𝑀 ′
𝑧𝑏, ∀𝑏 ∈ ℬ. (H32)

With large enough 𝑁𝐴, 𝑁𝐵, 𝑁𝑧, we can make ̂︂𝑀𝑧𝑏 arbitrarily close to 𝑀𝑧𝑏.

H.3.b. Learning states

Given any state 𝜌𝑥. We can learn 𝜌𝑥 by conducting the following randomized experiments for 𝑁𝑥

times: prepare 𝜌𝑥, evolve under ℰ𝐶 for a random Clifford gate 𝐶, measureℳ0. We denote the sets of
experimental outcomes as (︁

𝐶(𝑥,𝑖), 𝑏(𝑥,𝑖) ∈ {0, 1}𝑛
)︁
, ∀𝑖 = 1, . . . , 𝑁𝑥. (H33)

We can obtain an estimate for 𝜌𝑥 using the following formula.

̂︀𝜌𝑥 =
𝑑2 − 1

𝑑𝑔 − 1

[︃
1

𝑁𝑥

𝑁𝑥∑︁
𝑖=1

(𝐶(𝑥,𝑖))†|𝑏(𝑥,𝑖)⟩⟨𝑏(𝑥,𝑖)|𝐶(𝑥,𝑖)

]︃
− 𝑑− 𝑔

𝑑

𝑑𝑔 − 1
𝐼. (H34)

With large enough 𝑁𝐴, 𝑁𝐵, 𝑁𝑥, we can make ̂︀𝜌𝑥 arbitrarily close to 𝜌𝑥. The analysis is the same as
that in Appendix H.2.b.

H.3.c. Learning CPTP maps

Given any CPTP map ℰ𝑦. We can learn ℰ𝑦 by conducting the following randomized experiments for
𝑁𝑦 times: prepare 𝜌0, evolve under ℰ𝐶1 for a random Clifford gate 𝐶1, evolve under ℰ𝑦, evolve under
ℰ𝐶2 for a different random Clifford gate 𝐶2, measure ℳ0. We denote the sets of 𝑁𝑦 experimental
outcomes as follows. (︁

𝐶
(𝑦,𝑖)
1 , 𝐶

(𝑦,𝑖)
2 , 𝑏(𝑦,𝑖) ∈ {0, 1}𝑛

)︁
, ∀𝑖 = 1, . . . , 𝑁𝑦. (H35)

We first learn the quantum process ℰ ′𝑦 = ℰ𝑦 ∘ 𝒩 , which conflates ℰ𝑦 with the Clifford gate noise
𝒩 . Following the same analysis as Appendix H.2.c but replacing 𝒩 by ℰ ′𝑦, we define the following
estimators.

̂ℰ ′𝑦(𝐼/𝑑) =
𝑑2 − 1

𝑑𝑔 − 1

⎡⎣ 1

𝑁𝑦

𝑁𝑦∑︁
𝑖=1

(𝐶
(𝑢,𝑖)
2 )†|𝑏(𝑦,𝑖)⟩⟨𝑏(𝑦,𝑖)|𝐶(𝑦,𝑖)

2

⎤⎦− 𝑑− 𝑔
𝑑

𝑑𝑔 − 1
𝐼. (H36)

̂︂Φℰ ′
𝑦
=

(𝑑2 − 1)2

(𝑑𝑓 − 1)(𝑑𝑔 − 1)

⎡⎣ 1

𝑁𝑦

𝑁𝑦∑︁
𝑖=1

(︁
(𝐶

(𝑦,𝑖)
2 )†|𝑏(𝑦,𝑖)⟩⟨𝑏(𝑦,𝑖)|𝐶(𝑦,𝑖)

2

)︁
⊗
(︁
𝐶

(𝑦,𝑖)
1 |0𝑛⟩⟨0𝑛|(𝐶(𝑦,𝑖)

1 )†
)︁𝑇⎤⎦

(H37)
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− (𝑑− 1
𝑑)(𝑑− 𝑔)

(𝑑𝑓 − 1)(𝑑𝑔 − 1)
[𝐼 ⊗ 𝐼]− 1− 𝑓

𝑑

𝑓 − 1
𝑑

[︁
𝒩 (𝐼/𝑑)⊗ 𝐼

]︁
. (H38)

With large enough 𝑁𝐴, 𝑁𝐵, 𝑁𝑦, we can make ̂︂Φℰ ′
𝑦

arbitrarily close to Φℰ ′
𝑦
, the Choi matrix for the

CPTP map ℰ ′𝑦. Hence, we can obtain the estimator ̂︀ℰ ′𝑦 for ℰ ′𝑦 by transforming the Choi matrix back
to the CPTP map. Now we simply need to invert the conflation with 𝒩 by considerinĝ︀ℰ𝑦 = ̂︀ℰ ′𝑦 ∘ ( ̂︀𝒩 )−1. (H39)

Because the Clifford gate noise 𝒩 is assumed to be close to the identity, the difference between
(︁ ̂︀𝒩 †

)︁−1

and
(︀
𝒩 †)︀−1 can be made arbitrarily small by increasing𝑁𝐴, 𝑁𝐵. Therefore, we can make the difference

between ̂︀ℰ𝑦 and ℰ𝑦 arbitrarily small with large enough 𝑁𝐴, 𝑁𝐵, 𝑁𝑦.

H.4. Sample complexity for learning Clifford gate noise

All the previous analyses could be equipped with rigorous convergence guarantee using concentra-
tion inequalities similar to quantum state/process tomography based on randomized measurements
[22, 45]. As an example, we present the sample complexity for learning Clifford gate noise 𝒩 with
𝒩 (𝐼) = 𝐼. The reconstruction of𝒩 under the condition𝒩 (𝐼) = 𝐼 was previously studied in [26, 33, 41],
where learning algorithms based on interleaved randomized benchmarking [36] have been devised. We
will show that the proposed algorithm is much more efficient than the best known sample complexity
of 𝒪(𝑑8) in [26] for learning the Choi matrix Φ𝒩 up to a constant error in Hilbert-Schmidt norm.

Under the assumption that 𝒩 (𝐼) = 𝐼, we do not need to estimate 𝒩 (𝐼/𝑑) because 𝒩 (𝐼/𝑑) = 𝐼/𝑑.
Hence, the estimator in Eq. (H27) simplifies to

̂︂Φ𝒩 =
(𝑑2 − 1)2

(𝑑𝑓 − 1)(𝑑𝑔 − 1)

[︃
1

𝑁𝐵

𝑁𝐵∑︁
𝑖=1

(︁
(𝐶

(𝐵,𝑖)
2 )†|𝑏(𝐵,𝑖)⟩⟨𝑏(𝐵,𝑖)|𝐶(𝐵,𝑖)

2

)︁
⊗
(︁
𝐶

(𝐵,𝑖)
1 |0𝑛⟩⟨0𝑛|(𝐶(𝐵,𝑖)

1 )†
)︁𝑇]︃

(H40)

− (𝑑− 1
𝑑)(𝑑− 𝑔)

(𝑑𝑓 − 1)(𝑑𝑔 − 1)
[𝐼 ⊗ 𝐼]− 1− 𝑓

𝑑

𝑑𝑓 − 1
[𝐼 ⊗ 𝐼] . (H41)

Furthermore, using the definition of 𝑔 in Eq. (H10), we see that

(𝑑𝑓 − 1)(𝑑𝑔 − 1) = (𝑑2 − 1)

(︃
𝑑

[︃
1

𝑁𝐴

𝑁𝐴∑︁
𝑖=1

⟨𝑏(𝐴,𝑖)|𝐶(𝐴,𝑖)|0𝑛⟩⟨0𝑛|(𝐶(𝐴,𝑖))† |𝑏(𝐴,𝑖)⟩
]︃
− 1

)︃
(H42)

is independent of 𝑓 . Furthermore, we can simplify the coefficients for 𝐼 ⊗ 𝐼 using

− (𝑑− 1
𝑑)(𝑑− 𝑔)

(𝑑𝑓 − 1)(𝑑𝑔 − 1)
− 1− 𝑓

𝑑

𝑑𝑓 − 1
= − (𝑑− 1

𝑑)
2

(𝑑𝑓 − 1)(𝑑𝑔 − 1)
+

1

𝑑2
, (H43)

which is also independent of 𝑓 because (𝑑𝑓 − 1)(𝑑𝑔 − 1) is independent of 𝑓 . We can now rewrite the
estimator ̂︂Φ𝒩 as the following 𝑓 -independent expression,

̂︂Φ𝒩 = (𝑑2 − 1)

1
𝑁𝐵

∑︀𝑁𝐵
𝑖=1

(︁
(𝐶

(𝐵,𝑖)
2 )†|𝑏(𝐵,𝑖)⟩⟨𝑏(𝐵,𝑖)|𝐶(𝐵,𝑖)

2

)︁
⊗
(︁
𝐶

(𝐵,𝑖)
1 |0𝑛⟩⟨0𝑛|(𝐶(𝐵,𝑖)

1 )†
)︁𝑇

𝑑
[︁

1
𝑁𝐴

∑︀𝑁𝐴
𝑖=1 ⟨𝑏(𝐴,𝑖)|𝐶(𝐴,𝑖)|0𝑛⟩⟨0𝑛|(𝐶(𝐴,𝑖))† |𝑏(𝐴,𝑖)⟩

]︁
− 1

(H44)

− (𝑑2 − 1)
(𝐼/𝑑)⊗ (𝐼/𝑑)

𝑑
[︁

1
𝑁𝐴

∑︀𝑁𝐴
𝑖=1 ⟨𝑏(𝐴,𝑖)|𝐶(𝐴,𝑖)|0𝑛⟩⟨0𝑛|(𝐶(𝐴,𝑖))† |𝑏(𝐴,𝑖)⟩

]︁
− 1

+ (𝐼/𝑑)⊗ (𝐼/𝑑). (H45)

We will now present the algorithm for estimating Φ𝒩 under the Pauli basis. Consider two 𝑛-qubit Pauli
operators 𝑃,𝑄 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛. We would estimate tr((𝑃 ⊗ 𝑄)Φ𝒩 ) based on the above expression
for ̂︂Φ𝒩 . The estimation procedure is separated into three cases.
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H.4.a. 𝑃 = 𝐼 and 𝑄 = 𝐼

This is the simplest case. Because Φ𝒩 is a quantum state, we have tr(Φ𝒩 ) = 1. Hence, we can
obtain a perfect estimate for tr((𝑃 ⊗𝑄)Φ𝒩 ) as it is always one.

H.4.b. Exactly one of 𝑃 and 𝑄 is equal to 𝐼

This is also a simple case. Recall that a non-identity Pauli operator has trace equal to zero. Then,
using the definition of Choi matrix Φ𝒩 and 𝒩 (𝐼) = 𝐼, we have

tr((𝑃 ⊗𝑄)Φ𝒩 ) = 0. (H46)

Hence, we can obtain a perfect estimate for tr((𝑃 ⊗𝑄)Φ𝒩 ) as it is always zero.

H.4.c. 𝑃 ̸= 𝐼 and 𝑄 ̸= 𝐼

Using the fact that a non-identity Pauli operator has trace equal to zero, we have

tr((𝑃 ⊗𝑄)̂︂Φ𝒩 ) = (𝑑2− 1)

1
𝑁𝐵

∑︀𝑁𝐵
𝑖=1 ⟨𝑏(𝐵,𝑖)|𝐶

(𝐵,𝑖)
2 𝑃 (𝐶

(𝐵,𝑖)
2 )† |𝑏(𝐵,𝑖)⟩ ⟨0𝑛| (𝐶(𝐵,𝑖)

1 )†𝑄𝑇𝐶
(𝐵,𝑖)
1 |0𝑛⟩

𝑑
[︁

1
𝑁𝐴

∑︀𝑁𝐴
𝑖=1 ⟨𝑏(𝐴,𝑖)|𝐶(𝐴,𝑖)|0𝑛⟩⟨0𝑛|(𝐶(𝐴,𝑖))† |𝑏(𝐴,𝑖)⟩

]︁
− 1

. (H47)

We will directly use the above formula to estimate tr((𝑃 ⊗𝑄)Φ𝒩 ).
To analyze the error in the above estimator, we separately consider the convergence of the numerator

and the denominator. We begin with the denominator,

𝒴 = 𝑑

[︃
1

𝑁𝐴

𝑁𝐴∑︁
𝑖=1

⟨𝑏(𝐴,𝑖)|𝐶(𝐴,𝑖)|0𝑛⟩⟨0𝑛|(𝐶(𝐴,𝑖))† |𝑏(𝐴,𝑖)⟩
]︃
− 1 (H48)

=
1

𝑁𝐴

𝑁𝐴∑︁
𝑖=1

[︁
𝑑 ⟨𝑏(𝐴,𝑖)|𝐶(𝐴,𝑖)|0𝑛⟩⟨0𝑛|(𝐶(𝐴,𝑖))† |𝑏(𝐴,𝑖)⟩ − 1

]︁
. (H49)

Lemma H.2 (Concentration for the denominator). Fix 𝜖 > 0. Given 𝑁𝐴 = 𝒪(1/𝜖2). With probability
at least 0.99, we have ⃒⃒⃒⃒

𝒴 − (𝑑𝑓 − 1)(𝑑𝑔 − 1)

(𝑑− 1)(𝑑+ 1)

⃒⃒⃒⃒
< 𝜖, (H50)

where (𝑑𝑓−1)(𝑑𝑔−1)
(𝑑−1)(𝑑+1) ∈ [0.21, 1.21] from Eq. (H5).

Proof. Let 𝒴𝑖 = 𝑑 ⟨𝑏(𝐴,𝑖)|𝐶(𝐴,𝑖)|0𝑛⟩⟨0𝑛|(𝐶(𝐴,𝑖))† |𝑏(𝐴,𝑖)⟩ − 1. From unitary 2-design of random Clifford
gate, we have the following identity,

E[𝒴𝑖] =
(𝑑𝑓 − 1)(𝑑𝑔 − 1)

(𝑑− 1)(𝑑+ 1)
. (H51)

Then, using the unitary 3-design property of random Clifford gate [49, 52] and the conditions in
Eq. (H5), we have

Var[𝒴𝑖] ≤
1

|𝒞|
∑︁
𝐶∈𝒞

∑︁
𝑏∈{0,1}𝑛

tr(𝑀 ′
𝑏𝐶𝜌0𝐶

†)𝑑2(⟨𝑏|𝐶|0𝑛⟩⟨0𝑛|𝐶† |𝑏⟩)2 = 𝒪(1). (H52)

The claim then follows from 𝒴 = 1
𝑁𝐴

∑︀𝑁𝐴
𝑖=1 𝒴𝑖 and Chebyshev’s inequality.
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Next, we can analyze the numerator,

𝒳 =
1

𝑁𝐵

𝑁𝐵∑︁
𝑖=1

(𝑑2 − 1) ⟨𝑏(𝐵,𝑖)|𝐶(𝐵,𝑖)
2 𝑃 (𝐶

(𝐵,𝑖)
2 )† |𝑏(𝐵,𝑖)⟩ ⟨0𝑛| (𝐶(𝐵,𝑖)

1 )†𝑄𝑇𝐶
(𝐵,𝑖)
1 |0𝑛⟩ . (H53)

Lemma H.3 (Concentration for the numerator). Fix 0.5 > 𝜖, 𝛿 > 0. Given 𝑁𝐵 = 𝒪(𝑑2 log(1/𝛿)/𝜖2).
With probability at least 1− 𝛿,⃒⃒⃒⃒

𝒳 − (𝑑𝑓 − 1)(𝑑𝑔 − 1)

(𝑑− 1)(𝑑+ 1)
tr((𝑃 ⊗𝑄)Φ𝒩 )

⃒⃒⃒⃒
< 𝜖, (H54)

where (𝑑𝑓−1)(𝑑𝑔−1)
(𝑑−1)(𝑑+1) tr((𝑃 ⊗𝑄)Φ𝒩 ) ∈ [0.21, 1.21] from Eq. (H5).

Proof. Let 𝒳𝑖 = (𝑑2 − 1) ⟨𝑏(𝐵,𝑖)|𝐶(𝐵,𝑖)
2 𝑃 (𝐶

(𝐵,𝑖)
2 )† |𝑏(𝐵,𝑖)⟩ ⟨0𝑛| (𝐶(𝐵,𝑖)

1 )†𝑄𝑇𝐶
(𝐵,𝑖)
1 |0𝑛⟩. From unitary 2-

design of random Clifford gate and the fact that non-identity Pauli has trace zero, we have,

E[𝒳𝑖] =
(𝑑𝑓 − 1)(𝑑𝑔 − 1)

(𝑑− 1)(𝑑+ 1)
tr((𝑃 ⊗𝑄)Φ𝒩 ). (H55)

Because 𝐶(𝐵,𝑖)
2 is a random Clifford gate, 𝐶(𝐵,𝑖)

2 𝑃 (𝐶
(𝐵,𝑖)
2 )† is proportional to a random non-identity

Pauli {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛}. If 𝐶(𝐵,𝑖)
2 𝑃 (𝐶

(𝐵,𝑖)
2 )† is not proportional to a Pauli-Z operator {𝐼, 𝑍}⊗𝑛,

then 𝒳𝑖 = 0. Similarly (𝐶
(𝐵,𝑖)
1 )†𝑄𝑇𝐶

(𝐵,𝑖)
1 is proportional to a random non-identity Pauli. And,

𝐶
(𝐵,𝑖)
1 𝑄𝑇 (𝐶

(𝐵,𝑖)
1 )† is not proportional to a Pauli-Z operator {𝐼, 𝑍}⊗𝑛, then 𝒳𝑖 = 0. Because 𝐶1, 𝐶2 are

independent random gates, we have 𝒳𝑖 ̸= 0 with probability at most

(𝑑− 1)

(𝑑2 − 1)
× (𝑑− 1)

(𝑑2 − 1)
=

1

(𝑑+ 1)2
. (H56)

Furthermore, we have |𝒳𝑖| ≤ (𝑑2 − 1) with probability one. Therefore, we have

Var[𝒳𝑖] ≤ E[𝒳 2
𝑖 ] ≤

1

(𝑑+ 1)2
× (𝑑2 − 1)2 = (𝑑− 1)2 ≤ 𝑑2. (H57)

From Bernstein’s inequality and the definition that 𝒳 = 1
𝑁𝐵

∑︀𝑁𝐵
𝑖=1𝒳𝑖, we conclude the proof.

We can now establish the following statement.

Lemma H.4 (Combine numerator and denominator). Given 0 < 𝜖 < 0.1. Assume Eq. (H50) and
(H54) both hold. Then ⃒⃒⃒⃒𝒳

𝒴 − tr((𝑃 ⊗𝑄)Φ𝒩 )

⃒⃒⃒⃒
< 155𝜖. (H58)

Proof. The proof follows from the following analysis.

⃒⃒⃒⃒𝒳
𝒴 − tr((𝑃 ⊗𝑄)Φ𝒩 )

⃒⃒⃒⃒
≤

⃒⃒⃒⃒
⃒⃒𝒳𝒴 − 𝒳

(𝑑𝑓−1)(𝑑𝑔−1)
(𝑑−1)(𝑑+1)

⃒⃒⃒⃒
⃒⃒+
⃒⃒⃒⃒
⃒⃒ 𝒳
(𝑑𝑓−1)(𝑑𝑔−1)
(𝑑−1)(𝑑+1)

− tr((𝑃 ⊗𝑄)Φ𝒩 )

⃒⃒⃒⃒
⃒⃒ (H59)

≤ (1.21 + 𝜖)

⃒⃒⃒⃒
⃒⃒ 1𝒴 − 1

(𝑑𝑓−1)(𝑑𝑔−1)
(𝑑−1)(𝑑+1)

⃒⃒⃒⃒
⃒⃒ (H60)

+ 5

⃒⃒⃒⃒
𝒳 − (𝑑𝑓 − 1)(𝑑𝑔 − 1)

(𝑑− 1)(𝑑+ 1)
tr((𝑃 ⊗𝑄)Φ𝒩 )

⃒⃒⃒⃒
(H61)

< 1.5× 100𝜖+ 5𝜖 = 155𝜖. (H62)
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The first line uses triangle inequality. The second inequality uses the fact that

(𝑑𝑓 − 1)(𝑑𝑔 − 1)

(𝑑− 1)(𝑑+ 1)
,
(𝑑𝑓 − 1)(𝑑𝑔 − 1)

(𝑑− 1)(𝑑+ 1)
tr((𝑃 ⊗𝑄)Φ𝒩 ) ∈ [0.21, 1.21]. (H63)

The third inequality uses Eq. (H63), the condition that 0 < 𝜖 < 0.1, and⃒⃒⃒⃒
1

𝑎
− 1

𝑏

⃒⃒⃒⃒
<

1

min(𝑎, 𝑏)2
× |𝑎− 𝑏| , ∀𝑎, 𝑏 > 0. (H64)

This concludes the proof.

H.4.d. Final result

Recall the following Pauli basis representation of an 2𝑛-qubit quantum state,

Φ𝒩 =
∑︁

𝑃,𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛

tr((𝑃 ⊗𝑄)Φ𝒩 )
(𝑃 ⊗𝑄)

𝑑2
. (H65)

We can learn the coefficients tr((𝑃 ⊗ 𝑄)Φ𝒩 ) using the above strategy. We denote the estimated
coefficients as 𝑜(Φ𝒩 , 𝑃,𝑄) ∈ R. We can then obtain a reconstruction for Φ𝒩 as

Φ̃𝒩 (𝑁𝐴, 𝑁𝐵) =
∑︁

𝑃,𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛

𝑜(Φ𝒩 , 𝑃,𝑄)
(𝑃 ⊗𝑄)

𝑑2
. (H66)

We can now combine the previous results to show the sample complexity to learn the Choi matrix of
the Clifford gate noise Φ𝒩 up to 𝜖 error in Hilbert Schmidt norm.

Theorem H.5 (Sample complexity for learning Clifford gate noise). Given 0 < 𝜖 < 0.1𝑑. Assume the
noise is bounded as stated in Eq. (H5). With 𝑁𝐴 = 𝒪(𝑑2/𝜖2) and 𝑁𝐵 = 𝒪(𝑑4 log(𝑑)/𝜖2),⃦⃦⃦

Φ̃𝒩 (𝑁𝐴, 𝑁𝐵)− Φ𝒩

⃦⃦⃦
HS

< 𝜖, (H67)

with probability at least 0.99, where ‖𝑋‖HS = tr(𝑋2) is the Hilbert-Schmidt norm (Frobenius norm).

Proof. Let 𝜖′ = 𝜖/𝑑. We can employ union bound and Lemma H.2, H.3, H.4 to show that given
𝑁𝐴 = 𝒪(1/(𝜖′)2) = 𝒪(𝑑2/𝜖2) and 𝑁𝐵 = 𝒪(𝑑2 log(𝑑)/(𝜖′)2) = 𝒪(𝑑4 log(𝑑)/𝜖2) and 0 < 𝜖′ < 0.1, we
have

|𝑜(Φ𝒩 , 𝑃,𝑄)− tr((𝑃 ⊗𝑄)Φ𝒩 )| < 𝜖′ = 𝜖/𝑑, (H68)

with probability at least 0.99. Therefore, we have

⃦⃦⃦
Φ̃𝒩 (𝑁𝐴, 𝑁𝐵)− Φ𝒩

⃦⃦⃦
HS

=

⎯⎸⎸⎷ 1

𝑑2

∑︁
𝑃,𝑄∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛

|𝑜(Φ𝒩 , 𝑃,𝑄)− tr((𝑃 ⊗𝑄)Φ𝒩 )|2 < 𝜖 (H69)

with probability at least 0.99. This concludes the proof.
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I. Foundations for predicting extrinsic behaviors

Recall that Definition C.6 considers the predictability of properties in the world model. Here,
we refer to a property as a function that maps a world model to a real value. Given action spaces
𝒳 ,𝒴,𝒵 and an outcome space ℬ. There is a class of properties that are guaranteed to be predictable:
the probability of an outcome 𝑏 ∈ ℬ for an experiment specified by the sequence of actions 𝑥 ∈
𝒳 , 𝑦1, . . . , 𝑦ℓ ∈ 𝒴, 𝑧 ∈ 𝒵. We refer to such properties as the extrinsic behavior of the world model.
Formally, this class of properties is given in the following definition.

Definition I.1 (Extrinsic behavior of world model). Given action spaces 𝒳 ,𝒴,𝒵 and an outcome
space ℬ. We consider extrinsic behavior to be a set of properties ℱ = {𝑓 :𝒲 → R}. For any 𝑓 ∈ ℱ ,
there is an experiment 𝐸 = (𝑥 ∈ 𝒳 , 𝑦1 ∈ 𝒴, . . . , 𝑦ℓ ∈ 𝒴, 𝑧 ∈ 𝒵), and an outcome 𝑏 ∈ ℬ, such that

𝑓(𝒲) = tr(𝑀𝑧𝑏(ℰ𝑦ℓ ∘ . . . ∘ ℰ𝑦1)(𝜌𝑥)), (I1)

for any world model 𝒲 = ({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵). We refer to 𝑓 in the set as 𝑓 (behav)𝑥,𝑦1,...,𝑦ℓ,𝑧,𝑏
.

In the following, we give several fundamental results regarding the task of predicting extrinsic
behaviors. In particular, we will give rigorous guarantee for existing gate-set tomography protocols in
terms of learning the extrinsic behavior of the world model.

I.1. Hardness in predicting extrinsic behaviors

The goal of this appendix is to prove the following theorem.

Theorem I.2 (Worst case complexity for predicting extrinsic behaviors; Restatement of Theorem 3).
Consider finite sets 𝒳 ,𝒴,𝒵,ℬ with |ℬ| ≥ 2 and |ℬ| = 𝒪(poly(|𝒳 |, |𝒴|, |𝒵|)). Given 𝜖, 𝐿 > 0. For any
model class 𝒬 over 𝒳 ,𝒴,𝒵,ℬ, there is an algorithm that uses

𝒪̃
(︂ |𝒳 ||𝒴|𝐿|𝒵|

𝜖2

)︂
(I2)

experiments to accurately predict 𝑓 (behav)𝑥,𝑦1,...,𝑦𝐿,𝑧,𝑏
(𝒲) up to 𝜖-error for all 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈

𝒵, 𝑏 ∈ ℬ with high probability. Furthermore, there exists a model class 𝒬 over 𝒳 ,𝒴,𝒵,ℬ such that

Ω

(︂ |𝒳 ||𝒴|𝐿|𝒵|
𝜖2

)︂
(I3)

experiments are required to accurately predict 𝑓 (behav)𝑥,𝑦1,...,𝑦𝐿,𝑧,𝑏
(𝒲) up to 𝜖-error for all 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈

𝒴, 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ with high probability.

The first part of the theorem is straightforward. We consider the algorithm that runs through all
possible experiments with 𝐿 CPTP maps. For an experiment specified by 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈ 𝒵,
the algorithm performs each of the experiment for a number of

𝐾 = 𝒪
(︃
log
(︀
|𝒳 ||𝒴|𝐿|𝒵||ℬ|

)︀
𝜖2

)︃
(I4)

times. For any world model 𝒲 ∈ 𝒬, using Hoeffding’s inequality, the 𝐾 experimental outcomes can
be used to estimate the probability of an outcome 𝑏 ∈ ℬ for the experiment 𝐸 = (𝑥, 𝑦1, . . . , 𝑦𝐿, 𝑧), i.e.,
𝑓
(behav)
𝑥,𝑦1,...,𝑦𝐿,𝑧,𝑏

(𝒲), up to an error 𝜖 with probability ≥ 1 − 1/(10|𝒳 ||𝒴|𝐿|𝒵||ℬ|). Using union bound,

with probability ≥ 0.9, we can estimate 𝑓 (behav)𝑥,𝑦1,...,𝑦𝐿,𝑧,𝑏
(𝒲) up to an error 𝜖 for all 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈

𝒴, 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ. The total number of experiments used by the algorithm is

|𝒳 ||𝒴|𝐿|𝒵|𝐾 = 𝒪
(︃
|𝒳 ||𝒴|𝐿|𝒵| log

(︀
|𝒳 ||𝒴|𝐿|𝒵||ℬ|

)︀
𝜖2

)︃
= 𝒪̃

(︂ |𝒳 ||𝒴|𝐿|𝒵|
𝜖2

)︂
, (I5)
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because of the assumption that |ℬ| = 𝒪(poly(|𝒳 |, |𝒴|, |𝒵|)).
The second part of the theorem is more nontrivial. For this part of the proof, we will only utilize

two elements in ℬ, which we denote as 𝑏0, 𝑏1. We begin by constructing a model class 𝒬. The model
class 𝒬 contains a null world model 𝒲0 given by

𝜌𝑥 = |0⟩⟨0|, ∀𝑥 ∈ 𝒳 , (I6)
ℰ𝑦(𝜌) = |0⟩⟨0|, ∀𝑦 ∈ 𝒴, (I7)

𝑀𝑧𝑏0 =
1

2
𝐼, ∀𝑧 ∈ 𝒵, (I8)

𝑀𝑧𝑏1 =
1

2
𝐼, ∀𝑧 ∈ 𝒵, (I9)

𝑀𝑧𝑏 = 0, ∀𝑧 ∈ 𝒵,∀𝑏 ∈ ℬ ∖ {𝑏0, 𝑏1}, (I10)

where 𝐼 is the identity operator. The model class 𝒬 also contains another 2|𝒳 ||𝒴|𝐿|𝒵| world models
𝒲𝑥,𝑦1,...,𝑦𝐿,𝑧,𝑠 indexed by 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈ 𝒵, 𝑠 = ±1 satisfying

𝜌𝑥′ = |0⟩⟨0|, ∀𝑥′ ∈ 𝒳 ∖ {𝑥}, (I11)
𝜌𝑥 = |1⟩⟨1|, (I12)

ℰ𝑦ℓ(|ℓ⟩⟨ℓ|) = |ℓ+ 1⟩⟨ℓ+ 1|, ∀1 ≤ ℓ ≤ 𝐿, (I13)
ℰ𝑦(|ℓ⟩⟨ℓ|) = |0⟩⟨0|, ∀0 ≤ ℓ ≤ 𝐿+ 1, 𝑦 ∈ 𝒴, s.t.∀1 ≤ ℓ′ ≤ 𝐿, 𝑦 ̸= 𝑦ℓ′ , (I14)

𝑀𝑧𝑏0 =
1

2
(𝐼 + 3𝑠𝜖|𝐿+ 1⟩⟨𝐿+ 1|), ∀𝑧 ∈ 𝒵, (I15)

𝑀𝑧𝑏1 =
1

2
(𝐼 − 3𝑠𝜖|𝐿+ 1⟩⟨𝐿+ 1|), ∀𝑧 ∈ 𝒵, (I16)

𝑀𝑧𝑏 = 0, ∀𝑧 ∈ 𝒵,∀𝑏 ∈ ℬ ∖ {𝑏0, 𝑏1}, (I17)

For the null world model 𝒲0, the outcome distribution is always a uniform distribution over 𝑏0, 𝑏1
for any experiments. For world model 𝒲𝑥,𝑦1,...,𝑦𝐿,𝑧,𝑠, only for one experiment, i.e., when we consider
𝐸 = (𝑥, 𝑦1, . . . , 𝑦𝐿, 𝑧), the outcome distribution is a biased distribution over 𝑏0, 𝑏1, in particular, we see
𝑏0 with probability 1

2 + 3
2𝑠𝜖 and 𝑏1 with probability 1

2 − 3
2𝑠𝜖. For all other experiments, the outcome

distribution is again a uniform distribution over 𝑏0, 𝑏1. We will also denote 𝒲𝑥,𝑦1,...,𝑦𝐿,𝑧,𝑠 as 𝒲𝐸,𝑠,
where 𝐸 = (𝑥, 𝑦1, . . . , 𝑦𝐿, 𝑧) is an experiment.

We consider the true world model to be𝒲0 with probability 1/2 and be𝒲𝑥,𝑦1,...,𝑦𝐿,𝑧,𝑠 for a particular
choice of 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈ 𝒵, 𝑠 = ±1 with probability 1/(4|𝒳 ||𝒴|𝐿|𝒵|). If there is a learning
algorithm that could accurately predict 𝑓 (behav)𝑥,𝑦1,...,𝑦𝐿,𝑧,𝑏

(𝒲) up to 𝜖-error for all 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈
𝒵, 𝑏 ∈ ℬ, then the algorithm can be used to check if the true world model is equal to𝒲0. Recall that for
𝒲0, all experiments yield an outcome probability distribution that is uniform over {𝑏0, 𝑏1}. For world
model in 𝒬 ∖ {𝒲0}, the probability for one of the experiment specified 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈ 𝒵
will be a biased distribution. Hence, we can determine whether the true world model is equal to 𝒲0

by checking if for all 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈ 𝒵, the probability to obtain both 𝑏0 and 𝑏1 are close
to 1/2. This enables us to map the learning problem to a two-hypothesis testing problem. And the
question becomes:

How many experiments are required to test if the true world model is equal to 𝒲0?

We will utilize the proof techniques given in [9, 30] to answer the above question.
A learning algorithm is represented by a tree where each node represents the collection of data

received from all prior experiments. Each edge is label by an experiment 𝐸 and an outcome 𝑏 ∈
{𝑏0, 𝑏1} from that experiment. We only consider outcomes {𝑏0, 𝑏1} because the other outcomes happen
with zero probability by construction. The probability for traversing that edge is the product of the
probability for experiment 𝐸 using the learning algorithm and the probability for seeing the outcome
𝑏 for the experiment 𝐸. The depth 𝑇 of the tree is the total number of experiments conducted by the
learning algorithm. After conducting 𝑇 experiments, we will arrive at a leaf node of the tree. The
probability to arrive at a leaf node depends on the true world model.
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We consider two events: when the true world model is 𝒲0, and when the true world model is not
equal to 𝒲0. We distinguish the two events based on the data we collected from the 𝑇 experiments,
i,e., which leaf node has we arrived at. In order to successfully distinguish between the two events
with a constant probability, we need the total variation distance of the probability distribution over
the leaf nodes to be of Ω(1). Formally, this is known as LeCam’s two point method.

Each leaf node ℓ is specified by the path from root to the leaf node, which is a sequence of 𝑇
experiments and their corresponding outcomes. Hence, we write each leaf node as ℓ(𝐸1,𝛽1)...,(𝐸𝑇 ,𝛽𝑇 ),
where 𝛽𝑡 ∈ {𝑏0, 𝑏1} ⊆ ℬ. For the null world model 𝒲0, the probability of a leaf node is given by

𝑝𝒲0(ℓ(𝐸1,𝛽1)...,(𝐸𝑇 ,𝛽𝑇 )) =
𝑇∏︁
𝑡=1

(︂
1

2
𝑝(𝐸1,𝛽1)...,(𝐸𝑡−1,𝛽𝑡−1)(𝐸𝑡)

)︂
, (I18)

where 𝑝(𝐸1,𝛽1)...,(𝐸𝑡−1,𝛽𝑡−1)(𝐸𝑡) is the probability that the algorithm would perform the experiment 𝐸𝑡
when the algorithm have run 𝑡 − 1 experiments 𝐸1, . . . , 𝐸𝑡−1 and the corresponding outcomes are
𝛽1, . . . , 𝛽𝑡−1 ∈ {𝑏0, 𝑏1}. For the alternative world model 𝒲𝐸,𝑠, the probability of a leaf node is

𝑝𝒲𝐸,𝑠
(ℓ(𝐸1,𝛽1)...,(𝐸𝑇 ,𝛽𝑇 )) =

𝑇∏︁
𝑡=1

(︂
1

2
(1 + 3𝑠𝜖𝛿𝐸𝑡,𝐸 sign(𝛽𝑡)) 𝑝(𝐸1,𝛽1)...,(𝐸𝑡−1,𝛽𝑡−1)(𝐸𝑡)

)︂
, (I19)

where sign(𝛽𝑡) = 1 if 𝛽𝑡 = 𝑏0 and sign(𝛽𝑡) = −1 if 𝛽𝑡 = 𝑏1. We can now write down the total variation
distance between the probability distribution over the leaf nodes under the two events (true world
model =𝒲0 or true world model ̸=𝒲0),

TV =
1

2

∑︁
ℓ

⃒⃒⃒⃒
𝑝𝒲0(ℓ)− E

𝐸,𝑠
𝑝𝒲𝐸,𝑠

(ℓ)

⃒⃒⃒⃒
=

∑︁
ℓ: 𝑝𝒲0

(ℓ)≥E𝐸,𝑠 𝑝𝒲𝐸,𝑠
(ℓ)

(︂
𝑝𝒲0(ℓ)− E

𝐸,𝑠
𝑝𝒲𝐸,𝑠

(ℓ)

)︂
(I20)

≤
∑︁

ℓ: 𝑝𝒲0
(ℓ)≥𝑝𝒲𝐸,𝑠

(ℓ)

𝑝𝒲0(ℓ)𝜂 ≤ 𝜂, (I21)

where the parameter 𝜂 satisfies

E𝐸,𝑠 𝑝𝒲𝐸,𝑠
(ℓ)

𝑝𝒲0(ℓ)
≥ 1− 𝜂,∀ leaf node ℓ. (I22)

We will now find a parameter 𝜂 that satisfies the above condition. Given ℓ = ℓ(𝐸1,𝛽1)...,(𝐸𝑇 ,𝛽𝑇 ), we have

E𝐸,𝑠 𝑝𝒲𝐸,𝑠
(ℓ)

𝑝𝒲0(ℓ)
= E

𝐸,𝑠

𝑇∏︁
𝑡=1

(1 + 3𝑠𝜖𝛿𝐸𝑡,𝐸 sign(𝛽𝑡)) (I23)

= E
𝐸,𝑠

exp

[︃
𝑇∑︁
𝑡=1

log (1 + 3𝑠𝜖𝛿𝐸𝑡,𝐸 sign(𝛽𝑡))

]︃
(I24)

≥ exp

[︃
E
𝐸,𝑠

𝑇∑︁
𝑡=1

log (1 + 3𝑠𝜖𝛿𝐸𝑡,𝐸 sign(𝛽𝑡))

]︃
(I25)

= exp

[︃
1

2

𝑇∑︁
𝑡=1

E
𝐸
log
(︀
1− 9𝜖2𝛿𝐸𝑡,𝐸

)︀]︃
(I26)

≥ exp

[︃
1

2

𝑇∑︁
𝑡=1

1

|𝒳 ||𝒴|𝐿|𝒵| log
(︀
1− 9𝜖2

)︀]︃
(I27)

≥ exp

[︃
−

𝑇∑︁
𝑡=1

1

|𝒳 ||𝒴|𝐿|𝒵|9𝜖
2

]︃
(I28)

≥ 1− 9𝑇𝜖2

|𝒳 ||𝒴|𝐿|𝒵| . (I29)



53

The third line is Jensen’s inequality. The fourth line uses the fact that 𝑠 = ±1 uniformly. The fifth
line uses the fact 𝐸 is distributed uniformly over 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈ 𝒵. The second-to-
last line uses log(1 − 𝑥) ≥ −2𝑥,∀𝑥 ∈ [0, 0.79] which is satisfied given 𝜖 < 0.29. The last line uses
exp(𝑥) ≥ 1 + 𝑥,∀𝑥 ∈ R. Together, we can choose 𝜂 = 9𝑇𝜖2

|𝒳 ||𝒴|𝐿|𝒵| and we have established

Ω(1) ≤ TV ≤ 9𝑇𝜖2

|𝒳 ||𝒴|𝐿|𝒵| . (I30)

We have thus proved that the number of experiments must be at least 𝑇 = Ω(|𝒳 ||𝒴|𝐿|𝒵|/𝜖2).

J. A general theorem for predicting extrinsic behaviors

In order to avoid the worst-case complexity proved in the previous subsection, we need to make
stronger assumption about the true world model. We present one such assumption that is closely
related to the assumption used in existing gate set tomography protocols [4, 7, 20, 39]. Intuitively,
the assumption is that we can efficiently find a complete set of states that span the set of states we
can generate using the world model, and a complete set of POVM elements where its span include the
complete set of states. In the worst case, such as in the world models we constructed in the previous
subsection, we cannot find a complete set of states and POVM elements efficiently. As a result, we
see that the optimal complexity scales very badly (exponentially in 𝐿).

Before presenting the assumption, we will recall some basic concepts. Given a world model 𝒲 =
({𝜌𝑥}𝑥∈𝒳 , {ℰ𝑦}𝑦∈𝒴 , {ℳ𝑧}𝑧∈𝒵). We can compose a state 𝜌 and a CPTP map ℰ to prepare new state
ℰ(𝜌). Similarly, we can compose a POVM ℳ and a CPTP map ℰ to compose a new POVM ℳ∘ ℰ
that is equivalent to first applying ℰ then measure using ℳ. We refer to the states that could be
prepared by composing a finite sequence of CPTP maps ℰ𝑦 on some initial state 𝜌𝑥 as states that
could be generated in 𝒲.

J.1. Assumptions

We assume that we have found a linearly independent set of composed states {𝜌1, . . . , 𝜌𝐾1} such
that span(𝜌1, . . . , 𝜌𝐾1) contains all states that can be generated in 𝒲, where span(. . .) consider all
linear combinations with real coefficients. This is equivalent to stating that for any state 𝜌 that can
be generated in 𝒲, there exists a unique set of coefficients 𝛼1, . . . , 𝛼𝐾1 ∈ R satisfying

𝜌 =

𝐾1∑︁
𝑘1=1

𝛼𝑘1𝜌𝑘1 . (J1)

Because 𝜌 and 𝜌𝑘1 for all 𝑘1 ∈ {1, . . . ,𝐾1} are quantum states, we have
∑︀

𝑘1
𝛼𝑘1 = 1. We consider

𝑅1 > 0 to be the constant such that

𝐾1∑︁
𝑘1=1

|𝛼𝑘1 | ≤ 𝑅1 (J2)

for any quantum state 𝜌 in span(𝜌1, . . . , 𝜌𝐾1).

Remark 4. 𝑅1 <∞ because a finite-dimensional quantum state space is compact.

We also assume that we have found a set of composed POVM elements {𝑀1, . . . ,𝑀𝐾2} such that
span(𝜌1, . . . , 𝜌𝐾1) ⊆ span(𝑀1, . . . ,𝑀𝐾2). This assumption implies that for any 𝛼, 𝛼′ ∈ R𝐾1 , if

∀𝑘2 ∈ {1, . . . ,𝐾2}, tr

⎛⎝𝑀𝑘2

𝐾1∑︁
𝑘1=1

𝛼𝑘1𝜌𝑘1

⎞⎠ = tr

⎛⎝𝑀𝑘2

𝐾1∑︁
𝑘1=1

𝛼′
𝑘1𝜌𝑘1

⎞⎠ , (J3)



54

then 𝛼 = 𝛼′. In particular, we consider 𝑅2 > 0 to be the constant such that

⃦⃦
𝛼− 𝛼′⃦⃦

1
≤ 𝑅2

𝐾2∑︁
𝑘2=1

⃒⃒⃒⃒
⃒⃒tr
⎛⎝𝑀𝑘2

𝐾1∑︁
𝑘1=1

𝛼𝑘1𝜌𝑘1

⎞⎠− tr

⎛⎝𝑀𝑘2

𝐾1∑︁
𝑘1=1

𝛼′
𝑘1𝜌𝑘1

⎞⎠⃒⃒⃒⃒⃒⃒ (J4)

for any 𝛼, 𝛼′ ∈ R𝐾1 .

Remark 5. 𝑅2 < ∞ because the homogeneity of Eq. (J4) enables maximization to find 𝑅2 over the
compact space ‖𝛼− 𝛼′‖1 = 1.

J.2. Learning a frame

We are now ready to present an efficient learning algorithm that can be used to predict the extrinsic
behavior of the world model 𝒲. For each 𝑘2 = 1, . . . ,𝐾2, we consider the POVM element 𝑀𝑘2 to be
a unit vector in 𝐾2-dimensional vector space,

𝑀𝑘2 → 𝑒𝑘2 . (J5)

For each 𝑘1 = 1, . . . ,𝐾1, we consider the state 𝜌𝑘1 to be a vector 𝑤𝑘1 ∈ R𝐾2 ,

𝜌𝑘1 → 𝑤𝑘1 ≡
𝐾2∑︁
𝑘2=1

𝑤𝑘1,𝑘2𝑒𝑘2 , (J6)

where 𝑤𝑘1,𝑘2 is an estimate for tr(𝑀𝑘2𝜌𝑘1), such that

Pr [ |𝑤𝑘1,𝑘2 − tr(𝑀𝑘2𝜌𝑘1)| > 𝜖𝑤 ] ≤ 𝛿. (J7)

We can obtain an estimate 𝑤𝑘1,𝑘2 with the above guarantee using 𝒪(log(1/𝛿)/𝜖2𝑤) experiments. We
simply prepare 𝜌𝑘1 and measure the POVM associated to 𝑀𝑘2 , then compute the average of the
indicator function on whether the POVM element 𝑀𝑘2 is the outcome. Because indicator function of
an event is a bounded random variable, Hoeffding’s inequality gives us the above rigorous guarantee.

J.3. Learning states

For the initial states 𝜌𝑥 with 𝑥 ∈ 𝒳 , we represent 𝜌𝑥 as a 𝐾1-dimensional real vector

𝜌𝑥 → 𝑣𝑥 ≡
𝐾1∑︁
𝑘1=1

𝑣𝑥,𝑘1𝑒𝑘1 , (J8)

where 𝑣𝑥 is an optimum of the following optimization problem

OPT(𝑣𝑥) = min
𝛼∈R𝐾1 ,‖𝛼‖1≤𝑅1,∑︀𝐾1

𝑘1=1 𝛼𝑘1
=1

⃦⃦⃦⃦
⃦⃦ 𝐾1∑︁
𝑘1=1

𝛼𝑘1𝑤𝑘1 −
𝐾2∑︁
𝑘2=1

𝑣′𝑥,𝑘2𝑒𝑘2

⃦⃦⃦⃦
⃦⃦
1

, (J9)

and 𝑣′𝑥,𝑘2 is an estimate for tr(𝑀𝑘2𝜌𝑥), such that

Pr
[︀
|𝑣′𝑥,𝑘2 − tr(𝑀𝑘2𝜌𝑥)| > 𝜖𝑣

]︀
≤ 𝛿. (J10)

Because the above optimization is a convex optimization, one could solve for 𝛼𝑥 efficiently. The
purpose of the optimization problem is to project the vector

∑︀𝐾2
𝑘2=1 𝑣

′
𝑥,𝑘2

𝑒𝑘2 onto the space spanned
by 𝑣1, . . . , 𝑣𝐾1 . For a fixed 𝜖𝑣, 𝛿 > 0, the total number of experiments for learning representations of
the states is 𝒪(𝐾2|𝒳 | log(1/𝛿)/𝜖2𝑣).
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J.4. Learning CPTP maps

For the CPTP maps ℰ𝑦 with 𝑦 ∈ 𝒴, we represent ℰ𝑦 as a 𝐾1 ×𝐾1 real matrix of the form

ℰ𝑦 → 𝐴𝑦 ≡
𝐾1∑︁
𝑘1=1

𝐾1∑︁
𝑘′1=1

𝐴𝑦,𝑘1,𝑘′1𝑒𝑘1𝑒
𝑇
𝑘′1
, (J11)

where for each fixed value of 𝑘′1, the 𝐾1-dimensional vector 𝐴𝑦,(·),𝑘′1 is an optimum of the following
convex optimization problem

OPT(𝐴𝑦,(·),𝑘′1) = min
𝛼∈R𝐾1 ,‖𝛼‖1≤𝑅1,∑︀𝐾1

𝑘1=1 𝛼𝑘1
=1

⃦⃦⃦⃦
⃦⃦ 𝐾1∑︁
𝑘1=1

𝛼𝑘1𝑤𝑘1 −
𝐾2∑︁
𝑘2=1

𝐴′
𝑦,𝑘2,𝑘′1

𝑒𝑘2

⃦⃦⃦⃦
⃦⃦
1

, (J12)

and 𝐴′
𝑦,𝑘2,𝑘′1

is an estimate for tr(𝑀𝑘2ℰ𝑦(𝜌𝑘′1)), such that

Pr
[︁
|𝐴′

𝑦,𝑘2,𝑘′1
− tr(𝑀𝑘2ℰ𝑦(𝜌𝑘′1))| > 𝜖𝐴

]︁
≤ 𝛿. (J13)

Similar to before, the purpose of the optimization is to project the vector
∑︀𝐾2

𝑘2=1𝐴
′
𝑦,𝑘2,𝑘′1

𝑒𝑘2 to the
space formed by 𝑣1, . . . , 𝑣𝐾1 . For a fixed 𝜖𝐴, 𝛿 > 0, the total number of experiments for learning
representations of the CPTP maps is 𝒪(𝐾1𝐾2|𝒴| log(1/𝛿)/𝜖2𝐴).

J.5. Learning POVMs

For the POVM elements 𝑀𝑧𝑏 with 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ, we represent 𝑀𝑧𝑏 as a 𝐾1-dimensional real vector

𝑀𝑧𝑏 → 𝑢𝑧𝑏 ≡
𝐾1∑︁
𝑘1=1

𝑢𝑧,𝑏,𝑘1𝑒𝑘1 , (J14)

where 𝑢𝑧,𝑏,𝑘1 is an estimate for tr(𝑀𝑧𝑏𝜌𝑘1), such that

Pr [ |𝑢𝑧,𝑏,𝑘1 − tr(𝑀𝑧𝑏𝜌𝑘1)| > 𝜖𝑢 ] ≤ 𝛿. (J15)

For a fixed 𝜖𝑢, 𝛿 > 0, the total number of experiments for learning representations of the POVMs
is 𝒪(𝐾1|𝒵| log(1/𝛿)/𝜖2𝑢). The reason that we don’t need an extra factor of |ℬ| is because when we
measure the POVMℳ𝑧, we can simultaneously estimate 𝑐𝑧,𝑏,𝑘1 for all 𝑏 ∈ ℬ.

J.6. Prediction procedure and rigorous guarantee

During the prediction phase, we predict the probability for obtaining an outcome 𝑏 ∈ ℬ after
running the experiment 𝐸 = (𝑥, 𝑦1, . . . , 𝑦𝐿, 𝑧) to be

𝑢𝑇𝑧𝑏𝑃𝐴𝑦𝐿𝑃 . . . 𝑃𝐴𝑦1𝑣𝑥, (J16)

where 𝑃 is the projection to the convex set {𝛼 ∈ R𝐾1 |∑︀𝑘1
𝛼𝑘1 = 1, ‖𝛼‖1 ≤ 𝑅1}. We now give a

rigorous performance guarantee for this algorithm.

Theorem J.1 (Predicting extrinsic behaviors; Restatement of Theorem 4). Assume that we have
found a complete set of linearly independent states and POVMs. Using the proposed algorithm, we can
predict tr(𝑀𝑧𝑏(ℰ𝑦𝐿 ∘ . . . ∘ ℰ𝑦1)(𝜌𝑥)) to 𝜖 error for all 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈ 𝒵, 𝑏 ∈ ℬ using a total
of

𝒪̃
(︂ |𝒳 |+ 𝐿2|𝒴|+ |𝒵|

𝜖2

)︂
(J17)

experiments, where 𝒪̃(·) neglects logarithmic factors and considers 𝐾1,𝐾2, 𝑅1, 𝑅2 to be constant.
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J.7. Proof of Theorem J.1 — Step A. Representations of target outputs

From Eq. (J1) and (J2), ∀𝑥 ∈ 𝒳 , we can write 𝜌𝑥 as

𝜌𝑥 =

𝐾1∑︁
𝑘1=1

𝑣*𝑥,𝑘1𝜌𝑘1 , (J18)

for some 𝐾1-dimensional vector 𝑣*𝑥 with ‖𝑣*𝑥‖1 ≤ 𝑅1. Similarly, Eq. (J1) and (J2) shows that for any
𝑘′1 ∈ {1, . . . ,𝐾1}, we can write ℰ𝑦(𝜌𝑘′1) as

ℰ𝑦(𝜌𝑘′1) =
𝐾1∑︁
𝑘1=1

𝐴*
𝑦,𝑘1,𝑘′1

𝜌𝑘1 , (J19)

for some 𝐾1-dimensional vector 𝐴*
𝑦,(·),𝑘′1

with
⃦⃦⃦
𝐴*
𝑦,(·),𝑘′1

⃦⃦⃦
1
≤ 𝑅1. Using this representation, for an

experiment specified by 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈ 𝒵, the probability to obtain the measurement
outcome 𝑏 ∈ ℬ can be written as

tr(𝑀𝑧𝑏(ℰ𝑦𝐿 ∘ . . . ∘ ℰ𝑦1)(𝜌𝑥)) =
𝐾1∑︁
𝑘1=1

(𝐴*
𝑦𝐿
. . . 𝐴*

𝑦1𝑣
*
𝑥)𝑘1 tr(𝑀𝑧𝑏𝜌𝑘1) = (𝑢*𝑧𝑏)

𝑇𝐴*
𝑦𝐿
. . . 𝐴*

𝑦1𝑣
*
𝑥, (J20)

where we let 𝑢*𝑧,𝑏,𝑘1 ≡ tr(𝑀𝑧𝑏𝜌𝑘1) and 𝑢*𝑧𝑏 =
∑︀

𝑘1
𝑢*𝑧,𝑏,𝑘1𝑒𝑘1 .

J.8. Proof of Theorem J.1 — Step B. Error analysis for the learned representations

We begin by comparing the two vectors 𝑣*𝑥 and 𝑣𝑥, where 𝑣𝑥 is the representation learned from
experiments; see Eq. (J8). We can bound the difference as follows,

‖𝑣*𝑥 − 𝑣𝑥‖1 ≤ 𝑅2

𝐾2∑︁
𝑘2=1

⃒⃒⃒⃒
⃒⃒tr(𝑀𝑘2𝜌𝑥)−

𝐾1∑︁
𝑘1=1

𝑣𝑥,𝑘1 tr(𝑀𝑘2𝜌𝑘1)

⃒⃒⃒⃒
⃒⃒ (J21)

≤ 𝑅2

𝐾2∑︁
𝑘2=1

⎛⎝⃒⃒⃒⃒⃒⃒𝑣′𝑥,𝑘2 − 𝐾1∑︁
𝑘1=1

𝑣𝑥,𝑘1𝑤𝑘1,𝑘2

⃒⃒⃒⃒
⃒⃒+ 𝜖𝑣 + ‖𝑣𝑥‖1 𝜖𝑤

⎞⎠ (J22)

= 𝑅2OPT(𝑣𝑥) +𝑅2𝐾2 (𝜖𝑣 + ‖𝑣𝑥‖1 𝜖𝑤) , (J23)
≤ 𝑅2𝐾2 (𝜖𝑣 + ‖𝑣*𝑥‖1 𝜖𝑤) +𝑅2𝐾2 (𝜖𝑣 + ‖𝑣𝑥‖1 𝜖𝑤) , (J24)
≤ 2𝑅2𝐾2 (𝜖𝑣 +𝑅2𝜖𝑤) , (J25)

with probability at least 1 − (𝐾2 + 1)𝛿. The first line follows from Eq. (J4) and (J18). The second
line follows from Eq. (J7), (J10), and union bound. The third line follows from Eq. (J9). The fourth
line follows from considering 𝛼 = 𝑣*𝑥 in the optimization problem given at Eq. (J9), and utilize the
following bounds,⃦⃦⃦⃦

⃦⃦ 𝐾1∑︁
𝑘1=1

𝑣*𝑥,𝑘1𝑤𝑘1 −
𝐾2∑︁
𝑘2=1

𝑣′𝑥,𝑘2𝑒𝑘2

⃦⃦⃦⃦
⃦⃦
1

(J26)

≤
𝐾2∑︁
𝑘2=1

⃒⃒⃒⃒
⃒⃒ 𝐾1∑︁
𝑘1=1

𝑣*𝑥,𝑘1 tr(𝑀𝑘2𝜌𝑘1)− tr(𝑀𝑘2𝜌𝑥)

⃒⃒⃒⃒
⃒⃒+𝐾2 (𝜖𝑣 + ‖𝑣*𝑥‖1 𝜖𝑤) (J27)

=

𝐾2∑︁
𝑘2=1

|tr(𝑀𝑘2𝜌𝑥)− tr(𝑀𝑘2𝜌𝑥)|+𝐾2 (𝜖𝑣 + ‖𝑣*𝑥‖1 𝜖𝑤) = 𝐾2 (𝜖𝑣 + ‖𝑣*𝑥‖1 𝜖𝑤) . (J28)
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The last line follows from ‖𝑣*𝑥‖1 , ‖𝑣𝑥‖1 ≤ 𝑅1.
We can compare 𝐴*

𝑦,𝑘1,𝑘′1
and 𝐴𝑦,𝑘1,𝑘′1 by employing the same analysis and replacing Eq. (J18)

with (J19), Eq. (J8) with (J11), Eq. (J10) with (J13), and Eq. (J9) with (J12). For all 𝑦 ∈ 𝒴, 𝑘′1 ∈
{1, . . . ,𝐾1}, the analysis shows that the following,⃦⃦⃦

𝐴*
𝑦,(·),𝑘′1

−𝐴𝑦,(·),𝑘′1
⃦⃦⃦
1
≤ 2𝑅2𝐾2 (𝜖𝐴 +𝑅2𝜖𝑤) , (J29)

happens with probability at least 1−(𝐾2+1)𝛿. And recall from Eq. (J15), we have |𝑢𝑧,𝑏,𝑘1−𝑢*𝑧,𝑏,𝑘1 | ≤ 𝜖𝑢
with probability at least 1 − 𝛿. Together, with probability at least 1 − |𝒳 |(𝐾2 + 1)𝛿 − |𝒴|𝐾1(𝐾2 +
1)𝛿 − |𝒵||ℬ|𝛿 = 1− ((|𝒳 |+𝐾1|𝒴|)(𝐾2 + 1) + |𝒵||ℬ|)𝛿, we have

𝐾1∑︁
𝑘1=1

⃒⃒
𝑣*𝑥,𝑘1 − 𝑣𝑥,𝑘1

⃒⃒
≤ 2𝑅2𝐾2 (𝜖𝑣 +𝑅2𝜖𝑤) , ∀𝑥 ∈ 𝒳 , (J30)

𝐾1∑︁
𝑘1=1

⃒⃒⃒
𝐴*
𝑦,𝑘1,𝑘′1

−𝐴𝑦,𝑘1,𝑘′1
⃒⃒⃒
≤ 2𝑅2𝐾2 (𝜖𝐴 +𝑅2𝜖𝑤) , ∀𝑦 ∈ 𝒴, ∀𝑘′1 ∈ {1, . . . ,𝐾1}, (J31)⃒⃒

𝑢*𝑧,𝑏,𝑘1 − 𝑢𝑧,𝑏,𝑘1
⃒⃒
≤ 𝜖𝑢, ∀𝑧 ∈ 𝒵, 𝑏 ∈ ℬ, ∀𝑘1 ∈ {1, . . . ,𝐾1}. (J32)

This provides a set of error bounds for the learned representations.

J.9. Proof of Theorem J.1 — Step C. Error analysis for the prediction

We will now analyze the difference between the prediction and the true answer. We first define a
linear function mapping a 𝐾1-dimensional vector 𝛼 to a matrix

𝜌(𝛼) =

𝐾1∑︁
𝑘1=1

𝛼𝑘1𝜌𝑘1 . (J33)

Because 𝜌𝑘1 is a quantum state, we have

‖𝜌(𝛼)‖1 ≤
𝐾1∑︁
𝑘1=1

|𝛼𝑘1 | ‖𝜌𝑘1‖1 = ‖𝛼‖1 . (J34)

Note that ‖𝜌(𝛼)‖1 is the trace norm for a matrix, while ‖𝛼‖1 is a vector one-norm. For an experiment
specified by 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈ 𝒵, the difference between the probability for obtaining 𝑏 ∈ ℬ
and the predicted probability is⃒⃒

𝑢𝑇𝑧𝑏𝑃𝐴𝑦𝐿𝑃 . . . 𝑃𝐴𝑦1𝑣𝑥 − (𝑢*𝑧𝑏)
𝑇𝐴*

𝑦𝐿
. . . 𝐴*

𝑦1𝑣
*
𝑥

⃒⃒
(J35)

≤ max
𝑘1

⃒⃒
𝑢𝑧,𝑏,𝑘1 − 𝑢*𝑧,𝑏,𝑘1

⃒⃒
‖𝑃𝐴𝑦𝐿𝑃 . . . 𝑃𝐴𝑦1𝑣𝑥‖1 (J36)

+ | tr (𝑀𝑧𝑏𝜌(𝑃𝐴𝑦𝐿𝑃 . . . 𝑃𝐴𝑦1𝑣𝑥))− tr
(︀
𝑀𝑧𝑏𝜌(𝐴

*
𝑦𝐿
. . . 𝐴*

𝑦1𝑣
*
𝑥)
)︀
| (J37)

≤ 𝜖𝑢𝑅1 +
⃦⃦
𝜌(𝑃𝐴𝑦𝐿𝑃 . . . 𝑃𝐴𝑦1𝑣𝑥)− 𝜌(𝐴*

𝑦𝐿
. . . 𝐴*

𝑦1𝑣
*
𝑥)
⃦⃦
1
. (J38)

The first inequality is a telescoping sum with a triangle inequality. The second inequality follows from
Eq. (J32) and the fact that ‖𝑀𝑧𝑏‖∞ ≤ 1.

We will now analyze the second term in the above equation. We will prove that⃦⃦
𝜌(𝑃𝐴𝑦𝐿𝑃 . . . 𝑃𝐴𝑦1𝑣𝑥)− 𝜌(𝐴*

𝑦𝐿
. . . 𝐴*

𝑦1𝑣
*
𝑥)
⃦⃦
1

(J39)

≤ 2𝑅2𝐾2 (𝜖𝑣 +𝑅2𝜖𝑤) + 2𝐿𝑅1𝑅2𝐾2 (𝜖𝐴 +𝑅2𝜖𝑤) (J40)

by induction on 𝐿. For the base case 𝐿 = 0, from Eq. (J30) and Eq. (J34), we see that

‖𝜌(𝑣𝑥)− 𝜌(𝑣*𝑥)‖1 ≤ ‖𝑣𝑥 − 𝑣*𝑥‖1 ≤ 2𝑅2𝐾2 (𝜖𝑣 +𝑅2𝜖𝑤) . (J41)
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Suppose that the claim holds for 𝐿− 1. Then⃦⃦
𝜌(𝑃𝐴𝑦𝐿𝑃 . . . 𝑃𝐴𝑦1𝑣𝑥)− 𝜌(𝐴*

𝑦𝐿
. . . 𝐴*

𝑦1𝑣
*
𝑥)
⃦⃦
1

(J42)

≤
⃦⃦
𝜌(𝑃𝐴𝑦𝐿(𝑃𝐴𝑦𝐿−1 . . . 𝑃𝐴𝑦1𝑣𝑥))− 𝜌(𝐴*

𝑦𝐿
(𝑃𝐴𝑦𝐿−1 . . . 𝑃𝐴𝑦1𝑣𝑥))

⃦⃦
1

(J43)

+
⃦⃦⃦
𝜌(𝐴*

𝑦𝐿
(𝑃𝐴𝑦𝐿−1 . . . 𝑃𝐴𝑦1𝑣𝑥))− 𝜌(𝐴*

𝑦𝐿
(𝐴*

𝑦𝐿−1
. . . 𝐴*

𝑦1𝑣
*
𝑥))
⃦⃦⃦
1

(J44)

≤
⃦⃦
𝑃𝐴𝑦𝐿(𝑃𝐴𝑦𝐿−1 . . . 𝑃𝐴𝑦1𝑣𝑥)−𝐴*

𝑦𝐿
(𝑃𝐴𝑦𝐿−1 . . . 𝑃𝐴𝑦1𝑣𝑥)

⃦⃦
1

(J45)

+
⃦⃦⃦
ℰ𝑦𝐿
(︀
𝜌(𝑃𝐴𝑦𝐿−1 . . . 𝑃𝐴𝑦1𝑣𝑥 −𝐴*

𝑦𝐿−1
. . . 𝐴*

𝑦1𝑣
*
𝑥)
)︀⃦⃦⃦

1
(J46)

≤
𝐾1∑︁
𝑘1=1

⎛⎝max
𝑘′1

⃒⃒⃒
𝑃𝐴𝑦𝐿,𝑘1,𝑘′1 −𝐴

*
𝑦𝐿,𝑘1,𝑘

′
1

⃒⃒⃒ 𝐾1∑︁
𝑘′1=1

⃒⃒⃒
(𝑃𝐴𝑦𝐿−1 . . . 𝑃𝐴𝑦1𝑣𝑥)𝑘′1

⃒⃒⃒⎞⎠ (J47)

+
⃦⃦⃦
𝜌(𝑃𝐴𝑦𝐿−1 . . . 𝑃𝐴𝑦1𝑣𝑥 −𝐴*

𝑦𝐿−1
. . . 𝐴*

𝑦1𝑣
*
𝑥)
⃦⃦⃦
1

(J48)

≤ 2𝑅1𝑅2𝐾2 (𝜖𝐴 +𝑅2𝜖𝑤) (J49)
+ 2𝑅2𝐾2 (𝜖𝑣 +𝑅2𝜖𝑤) + 2(𝐿− 1)𝑅1𝑅2𝐾2 (𝜖𝐴 +𝑅2𝜖𝑤) (J50)
= 2𝑅2𝐾2 (𝜖𝑣 +𝑅2𝜖𝑤) + 2𝐿𝑅1𝑅2𝐾2 (𝜖𝐴 +𝑅2𝜖𝑤) . (J51)

The first inequality follows from triangle inequality and the linearity of 𝜌(𝛼). The second inequality
follows from the action of ℰ𝑦 given in Eq. (J19). The third inequality uses two basic inequalities:
‖(𝐴−𝐴′)𝑥‖ ≤∑︀𝑖(max𝑗 |(𝐴− 𝐴′)𝑖𝑗|

∑︀
𝑗 𝑥𝑗), ∀𝐴,𝐴′ ∈ R𝑘×𝑘, 𝑥 ∈ R𝑘, and ‖ℰ(𝑋)‖1 ≤ ‖𝑋‖1 for CPTP

map ℰ and Hermitian matrix 𝑋. The fourth inequality uses induction hypothesis, Eq. (J31), and the
fact that

∑︀
𝑘 |(𝑃𝑥)𝑘| ≤ 𝑅1 for any 𝑥 ∈ R𝐾1 .

J.10. Proof of Theorem J.1 — Step D. Putting everything together

Together, we consider the following parameter choices,

1

𝛿
= 100((|𝒳 |+𝐾1|𝒴|)(𝐾2 + 1) + |𝒵||ℬ|), (J52)

1

𝜖𝑤
=

16𝐿𝑅1𝑅
2
2𝐾2

𝜖
, (J53)

1

𝜖𝑣
=

8𝑅2𝐾2

𝜖
, (J54)

1

𝜖𝐴
=

8𝐿𝑅1𝑅2𝐾2

𝜖
, (J55)

1

𝜖𝑢
=

4𝑅1

𝜖
, (J56)

to ensure that with probability at least 0.99, for any experiment specified by 𝑥 ∈ 𝒳 , 𝑦1, . . . , 𝑦𝐿 ∈ 𝒴, 𝑧 ∈
𝒵, the difference between the actual probability for obtaining the measurement outcome 𝑏 ∈ ℬ and
the predicted probability is bounded above by 𝜖,⃒⃒

𝑢𝑇𝑧𝑏𝑃𝐴𝑦𝐿𝑃 . . . 𝑃𝐴𝑦1𝑣𝑥 − tr(𝑀𝑧𝑏(ℰ𝑦𝐿 ∘ . . . ∘ ℰ𝑦1)(𝜌𝑥))
⃒⃒
≤ 𝜖. (J57)

By aggregating the number of experiments for learning a frame, states, maps, and POVMs, the total
number of experiment is of order

𝐿2𝑅2
1𝑅

4
2𝐾

2
2 + |𝒳 |𝑅2

2𝐾
3
2 + 𝐿2|𝒴|𝐾1𝐾

3
2𝑅

2
1𝑅

2
2 + |𝒵|𝑅2

1𝐾1

𝜖2
log (𝐾2|𝒳 |+𝐾1𝐾2|𝒴|+ |𝒵||ℬ|) (J58)

= 𝒪̃
(︂ |𝒳 |+ 𝐿2|𝒴|+ |𝒵|

𝜖2

)︂
, (J59)

where 𝒪̃(·) neglects logarithmic contributions and considers 𝐾1,𝐾2, 𝑅1, 𝑅2 to be constant.
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K. Related work

In this appendix, we present the connection of the theory developed in this work and existing
works. We will refer to basic concepts developed in some of the previous appendices. In particular,
Appendix A on the definition of world models, Appendix C on the definition of model classes and
learning intrinsic descriptions, and Appendix I on the definition of predicting extrinsic behaviors.

K.1. Gate set tomography

The most relevant literature to the theory of world models developed in this work is gate set
tomography. Here we provide a brief review on gate set tomography. We refer the readers to two
comprehensive reviews on gate set tomography [20, 39]. Ref. [20] gives the basic concepts and [39]
provides both the fundamental ideas and recent progress on gate set tomography. An experimental
demonstration of gate set tomography is given in [4]. An open-sourced software for gate set tomography
has been developed in [15].

The main goal of gate set tomography (GST) is to characterize how quantum processes and logical
gates affect the qubits in the device. This is closely related to the task of quantum process tomography
(QPT). However, in quantum process tomography, one assumes perfect state preparations and perfect
POVM measurements. The key differences between GST and QPT are: (1) the lack of assumption on
perfect states and measurements; (2) the need to benchmark multiple quantum processes (gates) at
once. Because GST does not assume the ability to prepare perfect states and measurements, existing
protocols learn the relation between different gates instead of the intrinsic physical description of each
gate. This problem is referred to as gauge freedom in GST.

When we vectorize state and POVM element as vec(𝜌𝑥) and vec(𝑀𝑧𝑏) and write the CPTP maps
ℰ𝑦 as a matrix 𝐴𝑦, then we have

tr(𝑀𝑧𝑏ℰ𝑦(𝜌𝑥)) = vec(𝑀𝑧𝑏)
𝑇𝐴𝑦vec(𝜌𝑥) = (𝑀−1vec(𝑀𝑧𝑏))

𝑇 (𝑀𝐴𝑦𝑀
−1)(𝑀vec(𝜌𝑥)). (K1)

The following transformation is known as a gauge transformation

vec(𝜌𝑥)→𝑀vec(𝜌𝑥), (K2)

𝐴𝑦 →𝑀𝐴𝑦𝑀
−1, (K3)

vec(𝑀𝑧𝑏)→𝑀−1vec(𝑀𝑧𝑏), (K4)

which is parameterized by an invertible matrix 𝑀 . Most existing GST protocols are designed to learn
the vectorization and matricization up the the gauge freedom, specified by the matrix 𝑀 . Due to the
gauge 𝑀 , it has been difficult to provide a fully rigorous statistical analysis of GST. The key problem
is that the gauge freedom makes it challenging to define errors in GST. And we are not aware of a
rigorous proof showing the required number of experiments to perform GST up to certain error.

We begin with a summary of the difference between the theory on learning world models developed
in this work and the existing literature on gate set tomography [39]. According to the review [39],
GST is tomography of a novel entity, which is not the individual description of each gate, but some
form of relations between the gates. Based on our theory, we can formalize this novel entity as a
non-physical model capable of predicting the extrinsic behaviors of the quantum device under the
following assumption: one can (efficiently) find a complete basis of states and POVMs by composing
existing states, gates, and measurements. Without this assumption, Theorem 3 shows that learning
the extrinsic behavior can be extremely inefficient. And under this assumption, Theorem 4 provides
a rigorous algorithm, that shares many common aspects with GST, for predicting extrinsic behaviors
that improves significantly upon the worst case complexity given in Theorem 3.

In contrast, learning intrinsic physical descriptions of the operations in the device is significantly
more challenging than performing GST. In certain scenarios, it is impossible to learn the intrinsic
descriptions to arbitrary accuracy as shown in Theorem 6. However, we show that it is possible in
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many natural scenarios. We can learn the intrinsic description up to any accuracy when the world
model has an unknown pure state and a universal set of unknown gates (Theorem 2). Hence, being
“informationally complete” for GST is easier than being “informationally complete” for learning intrinsic
descriptions.

We now present several questions that illustrate the difference between the theory on learning world
models developed in this work and gate set tomography.

a. Is gauge transformation the same as weakly indistinguishable? No. When two world models
are related by the gauge transformation defined in GST, it is true that the two world models are
weakly indistinguishable, i.e., no experiments can distinguish the two world models. However, there
are pairs of weakly indistinguishable world models that are not related by a gauge transformation.
One such example has been presented in the main text. Consider the following two distinct physical
realities in a single-qubit system,

𝒲𝐴
HT : 𝜌𝐴0 = 𝐼/2, ℰ𝐴𝐻(𝜌) = 𝐻𝜌𝐻†, ℰ𝐴𝑇 (𝜌) = 𝑇𝜌𝑇 †, ℳ𝐴

0 = {|0⟩⟨0|, |1⟩⟨1|}, (K5)

𝒲𝐵
HT : 𝜌𝐵0 = 𝐼/2, ℰ𝐵𝐻 (𝜌) = 𝐼/2, ℰ𝐵𝑇 (𝜌) = 𝐼/2, ℳ𝐵

0 = {|0⟩⟨0|, |1⟩⟨1|}, (K6)

with actions 𝒳 = {0},𝒴 = {𝐻,𝑇},𝒵 = {0}. Because ℰ𝐴𝐻 ̸= ℰ𝐴𝑇 but ℰ𝐵𝐻 = ℰ𝐵𝑇 , it is impossible
that the two world models are related by a gauge transformation. However, as we have discussed
in the main text, the two world models cannot be distinguished by any experiment, hence they are
weakly indistinguishable. Together, we see that gauge equivalence as defined in GST implies weakly
indistinguishability, but two devices that are weakly indistinguishable does not imply gauge equivalence
in GST. This means the set of relations defined by gauge equivalence in GST is a subset of the relations
defined by weakly indistinguishable world models.

b. Can we always learn a world model up to gauge transformation? No. While GST removes the
assumption on perfect state preparations and measurements, GST still require assumptions to work.
It is not true that we can always learn a world model up to a gauge transformation using existing GST
protocols. This is already evident in the above example. The two world models 𝒲𝐴

HT,𝒲𝐵
HT are not

related by a gauge transformation, but they are weakly indistinguishable. Hence by Proposition E.2,
we cannot learn to distinguish the two world models from experiments.

c. Is gauge transformation the same as strongly indistinguishable (equivalence)? No. As Theo-
rem A.8 has shown, equivalent world models are related by unitary or anti-unitary transformation.
But two world models related by the gauge transformation defined in GST may not be related by
unitary or anti-unitary transformation. For example, consider two 𝑑-dimensional world models over
the action spaces 𝒳 = {𝜎}𝜎:state,𝒴 = {𝑈}𝑈∈SU(𝑑),𝒵 = {0} and outcome space ℬ = {1, . . . , 𝑑}:
𝒲𝐴 =

(︀
{𝜌𝐴𝑥 }𝑥∈𝒳 , {ℰ𝐴𝑦 }𝑦∈𝒴 , {ℳ𝐴

𝑧 }𝑧∈𝒵
)︀
, where

𝜌𝐴𝜎 = (1− 𝜖)𝜎 + 𝜖
𝐼

𝑑
, ∀𝜎 : state, (K7)

ℰ𝐴𝑈 (𝜌) = 𝑈𝜌𝑈 †, ∀𝑈 ∈ SU(𝑑), (K8)

ℳ𝐴
0 = {|𝑏⟩⟨𝑏|}𝑏=1,...,𝑑 , (K9)

and 𝒲𝐵 =
(︀
{𝜌𝐵𝑥 }𝑥∈𝒳 , {ℰ𝐵𝑦 }𝑦∈𝒴 , {ℳ𝐵

𝑧 }𝑧∈𝒵
)︀
, where

𝜌𝐵𝜎 = 𝜎, ∀𝜎 : state, (K10)

ℰ𝐵𝑈 (𝜌) = 𝑈𝜌𝑈 †, ∀𝑈 ∈ SU(𝑑), (K11)

ℳ𝐵
0 =

{︂
(1− 𝜖)|𝑏⟩⟨𝑏|+ 𝜖

𝐼

𝑑

}︂
𝑏=1,...,𝑑

, (K12)

We can see that 𝒲𝐴 has depolarized initial states, while 𝒲𝐵 has depolarized measurements. The two
world models are not related by a unitary or anti-unitary transformation, hence they describe distinct
physical realities. However, it is not hard to show that the two world models are related by a gauge
transformation 𝑀 .
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d. Are two gauge-equivalent devices always physically the same? No. We can have two noisy de-
vices with depolarization noise happening in the states or in the measurements; see the above example
of 𝒲𝐴 and 𝒲𝐵. The two devices are gauge equivalent. But these two noise processes are not physi-
cally the same. And hence the two devices are not physically the same. The inability to distinguish
the two world models𝒲𝐴 and𝒲𝐵 is due to the lack of sufficiently information actions. This is similar
to the case when one performs quantum state tomography with computational basis measurements.
A coherent |+⟩⟨+| state is indistinguishable from a maximally mixed state 𝐼/2 under computational
basis measurements. However, the two states are not physically the same. The indistinguishability
arises not from being physically the same, but from the lack of useful actions.

e. How does gauge transformation defined in GST relate to our theory on world models? Suppose
that we have a 𝑑-dimensional world model 𝒲, where we are assumed that we can identify a set of
(composed) states and a set of (composed) POVM elements, such that both sets span the entire
𝑑-dimensional quantum state space. Then every world model 𝒲 ′ that is weakly indistinguishable
from 𝒲 is related by a gauge transformation. Hence, under the assumption, we can equate weakly
indistinguishability and gauge equivalence in GST. This assumption is critical and has been explicitly
or implicitly assumed in existing GST protocols [39]. A similar assumption is made in Theorem 4
(restated in Theorem J.1) for developing an efficient algorithm for learning extrinsic behaviors.

f. What entity is GST learning according to our theory of world models? In this in-depth review
on GST [39], the authors noted multiple times that GST protocols are learning the relations between
the gates instead of the descriptions for individual gates. The description found on each gate may
not be endowed with a physical meaning — for some gauge 𝑀 , the resulting representations are no
longer the vectorization or matricization of states, POVM elements, and CPTP maps. Instead, one
should treat the collection of descriptions for all gates (and states, POVMs) as a joint description of
the entire device. Quoting from [39], “GST is tomography of a novel entity”. But what is this novel
entity? Based on our theory, the novel entity is the extrinsic behavior of the world models, i.e., the
collection of probability distributions over measurement outcomes under experiments. In particular,
GST learns the extrinsic behavior of world models that satisfy the assumption that we can identify a
set of (composed) states and a set of (composed) POVM elements, such that both sets span the entire
𝑑-dimensional quantum state space. When the assumption is not satisfied, Theorem 3 shows that the
complexity of learning extrinsic behaviors can be as bad as running all experiments. Building on this
realization, we can rigorously study the performance of different GST protocols: we simply look at
whether the protocols are able to accurately predict new experimental outcomes. In Theorem 4, we
build on this realization and develop a rigorous algorithm that can provably predict future experiments.

K.2. Quantum state/process/measurement tomography

The settings studied in quantum state, process, and measurement tomography are special cases
of our theory. In quantum state tomography, we are learning a world model such that the CPTP
maps and POVM measurements are perfect. Quantum state tomography focuses on learning unknown
quantum state 𝜌 to high accuracy, usually in trace norm or fidelity. See e.g. [2, 3, 21, 27] and references
within. In quantum measurement tomography [12], we are learning a world model such that the state
preparations and the the CPTP maps are perfect. The goal of quantum measurement tomography is to
learn the descriptions of the POVMs. Finally, in quantum process tomography [38], we are learning a
world model such that the state preparations and the POVM measurements are perfect. The purpose
of quantum process tomography is to learn the full description of some unknown quantum processes. A
subset of quantum processes that have been actively studied recently are the Pauli channels [17, 18, 24],
which are often considered to be the major noise sources in quantum computers.
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L. Quantum advantage with noisy devices that cannot be fully learned

L.1. Setting

We are given an (2𝑛)-qubit device with unknown operations.

L.1.a. State preparation and measurements

We can prepare an unknown product state given by

𝜌1 ⊗ . . .⊗ 𝜌2𝑛. (L1)

We can perform an unknown product measurement given by a POVM with 22𝑛 outcomes,{︃
2𝑛⨂︁
𝑖=1

𝑀
(𝑖)
𝐵𝑖

}︃
𝐵∈{0,1}2𝑛

, (L2)

where 𝑀 (𝑖)
𝐵𝑖
,∀𝑖 = 1, . . . , 2𝑛 are 2× 2 positive-semidefinite matrices.

L.1.b. Operations

In the device, we can apply layers of non-overlapping single- and two-qubit gates. We consider the
2𝑛 qubits to be represented by an 𝑛 × 2 grid. The grid coordinate of the 𝑖-th qubit (𝑖 from 1 to 𝑛)
is (⌈𝑖/2⌉, 𝑖 mod 2). Single-qubit gates can be applied at every grid point. But two-qubit gates can
only be applied at edges on the 𝑛× 2 grid. Each single-qubit gate is an unknown CPTP map on the
corresponding single qubit. And each two-qubit gate is an unknown CPTP map on the corresponding
two qubits. The unknown CPTP map implemented by each gate depend on the presence or absence
of all the other gates applied at the same layer.

Finally, we assume that we can load some unknown 𝑛-qubit quantum state 𝜌 on the 𝑛 qubits in
the left hand side of the 𝑛× 2 grid. Suppose 𝜎 is the quantum state on the 2𝑛 qubits. After loading
𝜌, the state on the 2𝑛 qubits becomes 𝜌⊗ trleft side(𝜎).

L.2. Algorithm for partially learning the device

In this section, we will partially learn some of the operations in the unknown quantum device. We
will obtain some descriptions that are useful for using the quantum device to achieve advantage in
performing entangled data analysis. The descriptions do not fully characterize the device. But the
lack of full characterization enables us to work under a more general setting.

L.2.a. Experiments and loss functions: Single-qubit

We perform an optimization to find nine single-qubit gates for every qubit, denoted as 𝑔𝑖,𝑘 for all
𝑖 = 1, . . . , 2𝑛, 𝑘 = 0, . . . , 8, by minimizing a loss function. In particular, after choosing 𝑔𝑖,𝑘, we conduct
the following experiments.

We consider the same single-qubit gates on the left hand side and the right hand side of the 𝑛× 2
qubit grid. For each of 𝑘1, 𝑘′1 ∈ {0, . . . , 5}, 𝑘2, 𝑘′2 ∈ {6, 7, 8}, we prepare the unknown product state
𝜌1⊗ . . .⊗ 𝜌2𝑛, apply a layer of single-qubit gates, followed by another layer of single-qubit gates, then
measure using the unknown product measurement. In the first layer of the single-qubit gates, we
apply 𝑔𝑖,𝑘1 for qubit 𝑖 on the left and apply 𝑔𝑖,𝑘′1 for qubit 𝑖 on the right. In the second layer of the
single-qubit gates, we apply 𝑔𝑖,𝑘2 for qubit 𝑖 on the left and apply 𝑔𝑖,𝑘′2 for qubit 𝑖 on the right. For



63

each 𝑘1, 𝑘
′
1, 𝑘2, 𝑘

′
2 and each qubit 𝑖, we estimate the probability for obtaining the outcome 𝑏 ∈ {0, 1},

denoted as 𝑝𝑘1,𝑘′1,𝑘2,𝑘′2,𝑖,𝑏. From a total of 𝒪(log(𝑛/𝛿)/𝜂20), the estimate 𝑝𝑘1,𝑘′1,𝑘2,𝑘′2,𝑖,𝑏 is equal to the
true probability up to 𝜂0 error for all 𝑘1, 𝑘′1, 𝑘2, 𝑘′2, 𝑖, 𝑏 with a probability at least 1− 𝛿. We now define
a loss function based on the estimated values,

𝜂1 = max
𝑘1,𝑘′1,𝑘2,𝑘

′
2,𝑖,𝑏

⃒⃒⃒
𝑝𝑘1,𝑘′1,𝑘2,𝑘′2,𝑖,𝑏 − 𝑓(𝑘1, 𝑘

′
1, 𝑘2, 𝑘

′
2, 𝑖, 𝑏)

⃒⃒⃒
. (L3)

The function 𝑓(𝑘1, 𝑘′1, 𝑘2, 𝑘′2, 𝑖, 𝑏) is defined as follows. For qubit 𝑖 on the left, we have

𝑓(𝑘1, 𝑘
′
1, 𝑘2, 𝑘

′
2, 𝑖, 𝑏) =

⎧⎪⎨⎪⎩
1/2 ⌊𝑘1/2⌋ ≠ (𝑘2 − 6)

1 ⌊𝑘1/2⌋ = (𝑘2 − 6), 𝑘1 ≡ 𝑏 (mod2)

0 ⌊𝑘1/2⌋ = (𝑘2 − 6), 𝑘1 ̸≡ 𝑏 (mod2)

(L4)

For qubit 𝑖 on the right, we have

𝑓(𝑘1, 𝑘
′
1, 𝑘2, 𝑘

′
2, 𝑖, 𝑏) =

⎧⎪⎨⎪⎩
1/2 ⌊𝑘′1/2⌋ ≠ (𝑘′2 − 6)

1 ⌊𝑘′1/2⌋ = (𝑘′2 − 6), 𝑘′1 ≡ 𝑏 (mod2)

0 ⌊𝑘′1/2⌋ = (𝑘′2 − 6), 𝑘′1 ̸≡ 𝑏 (mod2)

(L5)

We optimize over the selection of gates such that the loss function 𝜂1 is as small as possible.

L.2.b. Rigorous guarantee: Single-qubit

Given an estimation error 𝜂0 and the loss function 𝜂1, we can approximately learn the following
states and measurements. We combine the first layer of single-qubit gates determined by 𝑘1, 𝑘

′
1 and

the unknown product state to create a new set of product states, denoted as

𝜌
(𝑘1,𝑘′1)
1 ⊗ . . .⊗ 𝜌(𝑘1,𝑘

′
1)

2𝑛 , (L6)

for all 𝑘1, 𝑘′1 ∈ {0, 1, 2, 3, 4, 5}. We also combine the last layer of single-qubit gates determined by
𝑘2, 𝑘

′
2 and the unknown product measurement to create a new set of product measurements,{︃

2𝑛⨂︁
𝑖=1

𝑀
(𝑖,𝑘2,𝑘′2)
𝐵𝑖

}︃
𝐵∈{0,1}2𝑛

, (L7)

for all 𝑘2, 𝑘′2 ∈ {6, 7, 8}. We have the following characterization.

Lemma L.1 (Single-qubit stabilizer states). For any 𝑖 = 1, . . . , 2𝑛, there exists a unitary or anti-
unitary transformation 𝑈𝑖 on qubit 𝑖, such that the following holds for any 𝑘1, 𝑘′1, 𝑘2, 𝑘

′
2, 𝑏. For qubit 𝑖

on the left, we have ⃦⃦⃦
𝜌
(𝑘1,𝑘′1)
𝑖 − 𝑈𝑖𝜎𝑘1𝑈−1

𝑖

⃦⃦⃦
1
≤ 𝒪(𝜂0 + 𝜂1), (L8)⃦⃦⃦

𝑀
(𝑖,𝑘2,𝑘′2)
𝑏 − 𝑈𝑖𝜎2(𝑘2−6)+𝑏𝑈

−1
𝑖

⃦⃦⃦
1
≤ 𝒪(𝜂0 + 𝜂1). (L9)

For qubit 𝑖 on the right, we have ⃦⃦⃦
𝜌
(𝑘1,𝑘′1)
𝑖 − 𝑈𝑖𝜎𝑘′1𝑈

−1
𝑖

⃦⃦⃦
1
≤ 𝒪(𝜂0 + 𝜂1), (L10)⃦⃦⃦

𝑀
(𝑖,𝑘2,𝑘′2)
𝑏 − 𝑈𝑖𝜎2(𝑘′2−6)+𝑏𝑈

−1
𝑖

⃦⃦⃦
1
≤ 𝒪(𝜂0 + 𝜂1), (L11)

where the pure states 𝜎𝑥 for 𝑥 = 0, . . . , 5 are given by

|0⟩⟨0|, |1⟩⟨1|, |+⟩⟨+|, |−⟩⟨−|, |𝑦+⟩⟨𝑦+|, |𝑦−⟩⟨𝑦−|. (L12)
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Proof. Without loss of generality, we consider qubit 𝑖 on the left hand side of the 𝑛 × 2 grid. The
proof is the same for qubits on the right side except that we need to swap 𝑘1 ↔ 𝑘′1, 𝑘2 ↔ 𝑘′2. From
the estimate 𝑝𝑘1,𝑘′1,𝑘2,𝑘′2,𝑖,𝑏 and the definition of the loss function 𝜂1,⃒⃒⃒

tr
(︁
𝑀

(𝑖,𝑘2,𝑘′2)
𝑏 𝜌

(𝑘1,𝑘′1)
𝑖

)︁
− 𝑓(𝑘1, 𝑘′1, 𝑘2, 𝑘′2, 𝑖, 𝑏)

⃒⃒⃒
≤ 𝜂0 + 𝜂1, (L13)

for all 𝑘1, 𝑘′1, 𝑘2, 𝑘′2, 𝑏. The above defines an approximate geometry that can be used to infer the
underlying operations. This technique is used in Appendix D.5 to learn general 𝑑-dimensional systems.

For a fixed choice of 𝑘′1, 𝑘′2, we have six matrices for 𝜌(𝑘1,𝑘
′
1)

𝑖 and six matrices for 𝑀 (𝑖,𝑘2,𝑘′2)
𝑏 cor-

responding to different 𝑘1, 𝑘2 and 𝑏. Now, given 𝑞 = 0, 1, 2. We denote the two matrices 𝜌(𝑘1,𝑘
′
1)

𝑖

associated to 𝑘1 = 2𝑞+0, 2𝑞+1 as 𝜌0, 𝜌1, denote the two matrices 𝑀 (𝑖,𝑘2,𝑘′2)
𝑏 associated to 𝑘2 = 𝑞 and

𝑏 = 0, 1 as 𝑀0,𝑀1, and define 𝜂 = 𝜂0 + 𝜂1. We have the following inequalities from Eq. (L13),

tr(𝑀0𝜌0) ≥ 1− 𝜂, tr(𝑀0𝜌1) ≤ 𝜂, tr(𝑀1𝜌0) ≤ 𝜂, tr(𝑀1𝜌1) ≥ 1− 𝜂. (L14)

Using the fact that 𝑀0,𝑀1, 𝜌0, 𝜌1 are positive-semidefinite, 𝑀0 +𝑀1 = 𝐼, and tr(𝜌0) = tr(𝜌1) = 1,
there exists two orthogonal pure states |𝜓0⟩⟨𝜓0|, |𝜓1⟩⟨𝜓1| and a constant 𝐶 > 0, such that

‖𝑀0 − |𝜓0⟩⟨𝜓0|‖1 ≤ 𝐶𝜂, ‖𝑀1 − |𝜓1⟩⟨𝜓1|‖1 ≤ 𝐶𝜂, (L15)
‖𝜌0 − |𝜓0⟩⟨𝜓0|‖1 ≤ 𝐶𝜂, ‖𝜌1 − |𝜓1⟩⟨𝜓1|‖1 ≤ 𝐶𝜂. (L16)

Hence, we know that the six matrices for 𝜌(𝑘1,𝑘
′
1)

𝑖 are approximately pure states. Then we can use the
approximate geometry given in Eq. (L13) over pairs of distinct 𝑞 to show that there exists a constant
𝐶 ′ > 0 and a unitary or anti-unitary transformation 𝑈𝑖,𝑘′1,𝑘′2 such that⃦⃦⃦

𝜌
(𝑘1,𝑘′1)
𝑖 − 𝑈𝑖,𝑘′1,𝑘′2𝜎𝑘1𝑈

−1
𝑖,𝑘′1,𝑘

′
2

⃦⃦⃦
1
≤ 𝐶 ′𝜂, (L17)⃦⃦⃦

𝑀
(𝑖,𝑘2,𝑘′2)
𝑏 − 𝑈𝑖,𝑘′1,𝑘′2𝜎2(𝑘2−6)+𝑏𝑈

−1
𝑖,𝑘′1,𝑘

′
2

⃦⃦⃦
1
≤ 𝐶 ′𝜂, (L18)

where the pure states 𝜎𝑥 for 𝑥 = 0, . . . , 5 are given by

𝜎𝑥 = |0⟩⟨0|, |1⟩⟨1|, |+⟩⟨+|, |−⟩⟨−|, |𝑦+⟩⟨𝑦+|, |𝑦−⟩⟨𝑦−|, (L19)

respectively.
We see that 𝑈𝑖,𝑘′1,𝑘′2 depends on 𝑘′1, 𝑘′2. The last step is to show that we can actually choose a single

unitary or anti-unitary transformation 𝑈𝑖. Consider 𝑈𝑖 = 𝑈𝑖,𝑘′1=0,𝑘′2=6. For all 𝑥 = 0, . . . , 5, we have⃦⃦⃦
𝑈𝑖,𝑘′1,𝑘′2𝜎𝑥𝑈

−1
𝑖,𝑘′1,𝑘

′
2
− 𝑈𝑖𝜎𝑥𝑈−1

𝑖

⃦⃦⃦
1

(L20)

≤
⃦⃦⃦
𝑈𝑖,𝑘′1,𝑘′2𝜎𝑥𝑈

−1
𝑖,𝑘′1,𝑘

′
2
− 𝑈𝑖,0,𝑘′2𝜎𝑥𝑈

−1
𝑖,0,𝑘′2

⃦⃦⃦
1
+
⃦⃦⃦
𝑈𝑖,0,𝑘′2𝜎𝑥𝑈

−1
𝑖,0,𝑘′2

− 𝑈𝑖,0,6𝜎𝑥𝑈−1
𝑖,0,6

⃦⃦⃦
1

(L21)

≤
⃦⃦⃦
𝑈𝑖,𝑘′1,𝑘′2𝜎𝑥𝑈

−1
𝑖,𝑘′1,𝑘

′
2
− 𝜌(𝑥,𝑘

′
1)

𝑖

⃦⃦⃦
1
+
⃦⃦⃦
𝜌
(𝑥,𝑘′1)
𝑖 − 𝑈𝑖,0,𝑘′2𝜎𝑥𝑈

−1
𝑖,0,𝑘′2

⃦⃦⃦
1

(L22)

+
⃦⃦⃦
𝑈𝑖,0,𝑘′2𝜎𝑥𝑈

−1
𝑖,0,𝑘′2

−𝑀 (𝑖,𝑘2,⌊𝑥/2⌋+6)
𝑥mod2

⃦⃦⃦
1
+
⃦⃦⃦
𝑀

(𝑖,𝑘2,⌊𝑥/2⌋+6)
𝑥mod2 − 𝑈𝑖,0,6𝜎𝑥𝑈−1

𝑖,0,6

⃦⃦⃦
1

(L23)

≤ 2𝐶 ′𝜂 + 2𝐶 ′𝜂 = 4𝐶 ′𝜂. (L24)

The second-to-last inequality follows from Eq. (L17) and (L18). Together, we have⃦⃦⃦
𝜌
(𝑘1,𝑘′1)
𝑖 − 𝑈𝑖𝜎𝑘1𝑈−1

𝑖

⃦⃦⃦
1
≤ 𝒪(𝜂0 + 𝜂1), (L25)⃦⃦⃦

𝑀
(𝑖,𝑘2,𝑘′2)
𝑏 − 𝑈𝑖𝜎2(𝑘2−6)+𝑏𝑈

−1
𝑖

⃦⃦⃦
1
≤ 𝒪(𝜂0 + 𝜂1), (L26)

This concludes the proof.
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L.2.c. Experiments and loss functions: Two-qubit

We also perform another layer of optimization to find two two-qubit gates for every pair of corre-
sponding qubits on the left and right, i.e., qubit 𝑖 = 2ℓ− 1, 2ℓ, where ℓ = 1, . . . , 𝑛. We denote the two
two-qubit gates as 𝑔(2)ℓ,𝑠 and 𝑔

(2)
ℓ,𝑒 for each ℓ = 0, . . . , 𝑛. Similar to before, after choosing 𝑔(2)ℓ,𝑠 and 𝑔

(2)
ℓ,𝑒 ,

we conduct the following set of experiments.
For each of 𝑘1, 𝑘′1 ∈ {0, . . . , 5}, 𝑘2, 𝑘′2 ∈ {6, 7, 8}, 𝑥 ∈ {𝑠, 𝑒}, we prepare the unknown product state

𝜌1⊗ . . .⊗ 𝜌2𝑛, apply a layer of single-qubit gates, a layer of two-qubit gates, followed by another layer
of single-qubit gates, then measure using the unknown product measurement. In the first layer of the
single-qubit gates, we apply 𝑔𝑖,𝑘1 for qubit 𝑖 on the left and apply 𝑔𝑖,𝑘′1 for qubit 𝑖 on the right. In the

middle layer of two-qubit gates, we apply 𝑔(2)ℓ,𝑥 on qubit 2ℓ− 1 on the left and qubit 2ℓ on the right. In
the other layer of the single-qubit gates, we apply 𝑔𝑖,𝑘2 for qubit 𝑖 on the left and apply 𝑔𝑖,𝑘′2 for qubit
𝑖 on the right. For each 𝑘1, 𝑘

′
1, 𝑘2, 𝑘

′
2 and each pair of qubits 2ℓ − 1, 2ℓ, we estimate the probability

for obtaining the two bits 𝑏, 𝑏′ ∈ {0, 1} as the outcome, denoted as 𝑝(2)
𝑘1,𝑘′1,𝑘2,𝑘

′
2,𝑥,ℓ,𝑏,𝑏

′ . From a total of

𝒪(log(𝑛/𝛿)/𝜂20), the estimate 𝑝(2)
𝑘1,𝑘′1,𝑘2,𝑘

′
2,𝑥,ℓ,𝑏,𝑏

′ is equal to the true probability up to 𝜂0 error for all
𝑘1, 𝑘

′
1, 𝑘2, 𝑘

′
2, 𝑥, ℓ, 𝑏, 𝑏

′ with a probability at least 1− 𝛿. We now define another loss function based on
the estimated values,

𝜂2 = max
𝑘1,𝑘′1,𝑘2,𝑘

′
2,𝑥,ℓ,𝑏,𝑏

′

⃒⃒⃒
𝑝
(2)
𝑘1,𝑘′1,𝑘2,𝑘

′
2,𝑥,ℓ,𝑏,𝑏

′ − ℎ(𝑘1, 𝑘′1, 𝑘2, 𝑘′2, 𝑥, 𝑏, 𝑏′)
⃒⃒⃒
. (L27)

The function ℎ(𝑘1, 𝑘′1, 𝑘2, 𝑘′2, 𝑥, 𝑏, 𝑏′) is defined as follows.

ℎ(𝑘1, 𝑘
′
1, 𝑘2, 𝑘

′
2, 𝑥, 𝑏, 𝑏

′) = tr
(︁
(𝜌

(out)
𝑘2,𝑏
⊗ 𝜌(out)

𝑘′2,𝑏
′ )𝑈𝑥(𝜌

(in)
𝑘1
⊗ 𝜌(in)

𝑘′1
)𝑈 †

𝑥

)︁
, (L28)

𝜌
(in)
𝑘1

= 𝜎𝑘1 , (L29)

𝜌
(out)
𝑘2,𝑏

= 𝜎2(𝑘2−6)+𝑏, (L30)

𝜎0, . . . , 𝜎5 = |0⟩⟨0|, |1⟩⟨1|, |+⟩⟨+|, |−⟩⟨−|, |𝑦+⟩⟨𝑦+|, |𝑦−⟩⟨𝑦−|, (L31)
𝑈𝑠, 𝑈𝑒 = SWAP,BELL, (L32)

where SWAP and BELL are two-qubit unitaries, SWAP swaps the left and right qubits, BELL =
(𝐻 ⊗ 𝐼) CNOT, CNOT is controlled on the same qubit that the Hadamard 𝐻 acts on. The en-
tangling operation BELL followed by computational basis measurement is one way to perform Bell
measurement.

L.2.d. Rigorous guarantee: Two-qubit

Next, using the bound on the estimation error 𝜂0 and the loss function 𝜂2, we can approximately
learn the entangling operations. We can write the middle layer of two-qubit gates as

ℰℓ=1,𝑥 ⊗ . . .⊗ ℰℓ=𝑛,𝑥, (L33)

for 𝑥 ∈ {𝑠, 𝑒}, where ℰℓ,𝑥 acts on two qubits, 2ℓ− 1 and 2ℓ.

Lemma L.2 (SWAP and Bell measurement). For each qubit 𝑖 = 1, . . . , 2𝑛, consider the unitary or
anti-unitary transformation 𝑈𝑖 on qubit 𝑖 given in Lemma L.1.⃦⃦

ℰℓ,𝑠(·)− (𝑈2ℓ−1 ⊗ 𝑈2ℓ)SWAP(𝑈2ℓ−1 ⊗ 𝑈2ℓ)
−1(·)(𝑈2ℓ−1 ⊗ 𝑈2ℓ)SWAP(𝑈2ℓ−1 ⊗ 𝑈2ℓ)

−1
⃦⃦
1→1

(L34)

≤ 𝒪(𝜂0 + 𝜂1 + 𝜂2), (L35)⃦⃦⃦
ℰℓ,𝑒(·)− (𝑈2ℓ−1 ⊗ 𝑈2ℓ)BELL(𝑈2ℓ−1 ⊗ 𝑈2ℓ)

−1(·)(𝑈2ℓ−1 ⊗ 𝑈2ℓ)BELL
†(𝑈2ℓ−1 ⊗ 𝑈2ℓ)

−1
⃦⃦⃦
1→1

(L36)

≤ 𝒪(𝜂0 + 𝜂1 + 𝜂2), (L37)

where ‖ℰ‖1→1 = max‖𝑋‖1=1 ‖ℰ(𝑋)‖1.



66

Proof. We prove this lemma for SWAP. The proof for BELL is basically the same. We begin by
defining the following notations.

𝜌(𝑖𝑛) = (𝜎𝑘1 ⊗ 𝜎𝑘′1)), (L38)

𝜌(𝑜𝑢𝑡) = (𝜎2(𝑘2−6)+𝑏 ⊗ 𝜎2(𝑘′2−6)+𝑏′), (L39)

𝜌(𝑖𝑛,𝑈) = (𝑈2ℓ−1𝜎𝑘1𝑈
−1
2ℓ−1)⊗ (𝑈2ℓ𝜎𝑘′1𝑈

−1
2ℓ ), (L40)

𝜌(𝑜𝑢𝑡,𝑈) = (𝑈2ℓ−1𝜎2(𝑘2−6)+𝑏𝑈
−1
2ℓ−1)⊗ (𝑈2ℓ𝜎2(𝑘′2−6)+𝑏′𝑈

−1
2ℓ ), (L41)

𝜎0, . . . , 𝜎5 = |0⟩⟨0|, |1⟩⟨1|, |+⟩⟨+|, |−⟩⟨−|, |𝑦+⟩⟨𝑦+|, |𝑦−⟩⟨𝑦−|. (L42)

We can use triangle inequality in Eq. (L27) to show that⃒⃒⃒
tr
(︁(︁
𝑀

2ℓ−1,𝑘2,𝑘′2
𝑏 ⊗𝑀2ℓ,𝑘2,𝑘′2

𝑏′

)︁
ℰℓ,𝑠

(︁
𝜌
𝑘1,𝑘′1
2ℓ−1 ⊗ 𝜌

𝑘1,𝑘′1
2ℓ

)︁)︁
− tr

(︁
𝜌(𝑜𝑢𝑡)SWAP

(︁
𝜌(𝑖𝑛)

)︁
SWAP

)︁⃒⃒⃒
(L43)

≤
⃒⃒⃒
tr
(︁(︁
𝑀

2ℓ−1,𝑘2,𝑘′2
𝑏 ⊗𝑀2ℓ,𝑘2,𝑘′2

𝑏′

)︁
ℰℓ,𝑠

(︁
𝜌
𝑘1,𝑘′1
2ℓ−1 ⊗ 𝜌

𝑘1,𝑘′1
2ℓ

)︁)︁
− 𝑝(2)

𝑘1,𝑘′1,𝑘2,𝑘
′
2,𝑥,ℓ,𝑏,𝑏

′

⃒⃒⃒
(L44)

+
⃒⃒⃒
𝑝
(2)
𝑘1,𝑘′1,𝑘2,𝑘

′
2,𝑥,ℓ,𝑏,𝑏

′ − tr
(︁
𝜌(𝑜𝑢𝑡)SWAP

(︁
𝜌(𝑖𝑛)

)︁
SWAP

)︁⃒⃒⃒
(L45)

≤ 𝜂0 + 𝜂2. (L46)

Then from triangle inequality and Lemma L.1, we have⃒⃒⃒
tr
(︁(︁
𝑀

2ℓ−1,𝑘2,𝑘′2
𝑏 ⊗𝑀2ℓ,𝑘2,𝑘′2

𝑏′

)︁
ℰℓ,𝑠

(︁
𝜌
𝑘1,𝑘′1
2ℓ−1 ⊗ 𝜌

𝑘1,𝑘′1
2ℓ

)︁)︁
− tr

(︁
𝜌(𝑜𝑢𝑡,𝑈)ℰℓ,𝑠

(︁
𝜌(𝑖𝑛,𝑈)

)︁)︁⃒⃒⃒
(L47)

≤
⃒⃒⃒
tr
(︁(︁
𝑀

2ℓ−1,𝑘2,𝑘′2
𝑏 ⊗𝑀2ℓ,𝑘2,𝑘′2

𝑏′

)︁
ℰℓ,𝑠

(︁
𝜌
𝑘1,𝑘′1
2ℓ−1 ⊗ 𝜌

𝑘1,𝑘′1
2ℓ

)︁)︁
− tr

(︁
𝜌(𝑜𝑢𝑡,𝑈)ℰℓ,𝑠

(︁
𝜌
𝑘1,𝑘′1
2ℓ−1 ⊗ 𝜌

𝑘1,𝑘′1
2ℓ

)︁)︁⃒⃒⃒
(L48)

+
⃒⃒⃒
tr
(︁
𝜌(𝑜𝑢𝑡,𝑈)ℰℓ,𝑠

(︁
𝜌
𝑘1,𝑘′1
2ℓ−1 ⊗ 𝜌

𝑘1,𝑘′1
2ℓ

)︁)︁
− tr

(︁
𝜌(𝑜𝑢𝑡,𝑈)ℰℓ,𝑠

(︁
𝜌(𝑖𝑛,𝑈)

)︁)︁⃒⃒⃒
(L49)

≤
⃦⃦⃦(︁
𝑀

2ℓ−1,𝑘2,𝑘′2
𝑏 ⊗𝑀2ℓ,𝑘2,𝑘′2

𝑏′

)︁
− 𝜌(𝑜𝑢𝑡,𝑈)

⃦⃦⃦
1
+
⃦⃦⃦
𝜌
𝑘1,𝑘′1
2ℓ−1 ⊗ 𝜌

𝑘1,𝑘′1
2ℓ − 𝜌(𝑖𝑛,𝑈)

⃦⃦⃦
1

(L50)

≤ 𝒪(𝜂0 + 𝜂1). (L51)

Hence, by another triangle inequality, we obtain⃒⃒⃒
tr
(︁
𝜌(𝑜𝑢𝑡,𝑈)ℰℓ,𝑠

(︁
𝜌(𝑖𝑛,𝑈)

)︁)︁
− tr

(︁
𝜌(𝑜𝑢𝑡)SWAP

(︁
𝜌(𝑖𝑛)

)︁
SWAP

)︁⃒⃒⃒
≤ 𝒪(𝜂0 + 𝜂1 + 𝜂2). (L52)

Because every (2×2)×(2×2) Hermitian matrix can be written as a linear combination of 𝜎𝑖⊗𝜎𝑗 , ∀𝑖, 𝑗 ∈
{0, 1, . . . , 5}, we have the following bound by triangle inequality,⃦⃦

ℰℓ,𝑠(·)− (𝑈2ℓ−1 ⊗ 𝑈2ℓ)SWAP(𝑈2ℓ−1 ⊗ 𝑈2ℓ)
−1(·)(𝑈2ℓ−1 ⊗ 𝑈2ℓ)SWAP(𝑈2ℓ−1 ⊗ 𝑈2ℓ)

−1
⃦⃦
1→1

(L53)

≤ 𝒪(𝜂0 + 𝜂1 + 𝜂2). (L54)

This concludes the proof.

Remark 6. If 𝜂0 + 𝜂1 + 𝜂2 is smaller than some constant, then 𝑈2ℓ−1 and 𝑈2ℓ must be both unitary or
both anti-unitary, which can be shown by a proof by contradiction.

L.2.e. Putting everything together

When the quantum device is designed perfectly, the loss functions vanish, i.e., 𝜂1 = 𝜂2 = 0.
However, when the quantum device is subject to some unknown noise, the loss functions 𝜂1, 𝜂2 will be
small but non-zero. Here, we show that when we perform sufficient number of experiments to estimate
the loss functions and we find the loss functions to be small, then we can guarantee that the underlying
physical operations satisfy a certain form.
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From now on, we assume that 𝜂0 + 𝜂1 + 𝜂2 are small enough such that there exists 𝜖 > 0 and a set
of unitary or anti-unitary transformations 𝑈𝑖,∀𝑖 = 1, . . . , 2𝑛 satisfying the following constraints. For
all ℓ = 1, . . . , 𝑛, 𝑘1, 𝑘′1 ∈ {0, . . . , 5}, and 𝑘2, 𝑘′2 ∈ {6, 7, 8}, we have⃦⃦⃦

𝜌
(𝑘1,𝑘′1)
2ℓ−1 ⊗ 𝜌(𝑘1,𝑘

′
1)

2ℓ − (𝑈2ℓ−1𝜎𝑘1𝑈
−1
2ℓ )⊗ (𝑈2ℓ𝜎𝑘′1𝑈

−1
2ℓ )
⃦⃦⃦
1
≤ 𝜖, (L55)∑︁

𝑏,𝑏′∈{0,1}

⃦⃦⃦
𝑀

(2ℓ−1,𝑘2,𝑘′2)
𝑏 ⊗𝑀 (2ℓ,𝑘2,𝑘′2)

𝑏′ − (𝑈2ℓ−1𝜎2(𝑘2−6)+𝑏𝑈
−1
2ℓ )⊗ (𝑈2ℓ𝜎2(𝑘′2−6)+𝑏′𝑈

−1
2ℓ )
⃦⃦⃦
1
≤ 𝜖, (L56)

where the pure states 𝜎𝑥 for 𝑥 = 0, . . . , 5 are given by

|0⟩⟨0|, |1⟩⟨1|, |+⟩⟨+|, |−⟩⟨−|, |𝑦+⟩⟨𝑦+|, |𝑦−⟩⟨𝑦−|. (L57)

And we also have⃦⃦
ℰℓ,𝑠 − (𝑈2ℓ−1 ⊗ 𝑈2ℓ)SWAP(𝑈2ℓ−1 ⊗ 𝑈2ℓ)

−1(·)(𝑈2ℓ−1 ⊗ 𝑈2ℓ)SWAP(𝑈2ℓ−1 ⊗ 𝑈2ℓ)
−1
⃦⃦
1→1
≤ 𝜖, (L58)⃦⃦⃦

ℰℓ,𝑒 − (𝑈2ℓ−1 ⊗ 𝑈2ℓ)BELL(𝑈2ℓ−1 ⊗ 𝑈2ℓ)
−1(·)(𝑈2ℓ−1 ⊗ 𝑈2ℓ)BELL

†(𝑈2ℓ−1 ⊗ 𝑈2ℓ)
−1
⃦⃦⃦
1→1
≤ 𝜖, (L59)

where SWAP and BELL are two-qubit unitaries, SWAP swaps the left and right qubits, BELL =
(𝐻 ⊗ 𝐼) CNOT, and ‖ℰ‖1→1 = max‖𝑋‖1=1 ‖ℰ(𝑋)‖1.

L.3. Task description and quantum advantage

We focus on the task of predicting many incompatible properties in unknown physical systems
studied in [9, 28, 30]. We consider an unknown physical system described by an 𝑛-qubit separable
state 𝜌. Recall that a separable state is a classical probability mixture over product states. The goal
is to learn to predict properties about 𝜌.

We compare two experimental settings: conventional experiments and quantum-enhanced exper-
iments. In conventional experiments, the physicist could perform any POVM measurement on the
unknown state 𝜌 to gather classical data. Based on the measurement data, the physicist could adap-
tively choose the next measurement on 𝜌 to obtain more data. After many rounds of measurements,
the physicist combines all measurement outcomes to form a model about the unknown state 𝜌. In
quantum-enhanced experiments, the physicist could load multiple copies of the unknown state 𝜌 to a
quantum computing system. The physicist can then use the quantum computer to perform quantum
data analysis to learn a model about the unknown state 𝜌. After learning a model of 𝜌, we will ask
the physicist to predict properties about 𝜌.

We assume that the conventional experiments are perfect. All the POVM measurement could
be chosen arbitrarily and are not subject to any noise. In contrast, we consider quantum-enhanced
experiments to base only on the noisy and unknown quantum device that we partially learned in
Appendix L.2. Despite the imperfection of quantum-enhanced experiments, we can still demonstrate
a large quantum advantage.

Theorem L.3 (Advantage with noisy quantum device; Restatement of Theorem 7). Given 𝑛 >
0. Suppose 𝜖 is the error on each two-qubit operation in the noisy quantum device. There exists
a distribution over unknown 𝑛-qubit separable states 𝜌 and properties, such that quantum-enhanced
experiments using the noisy quantum device only require 𝑁Q = 𝒪((1/(1 − 4𝜖))2𝑛) experiments to
predict accurately, while noiseless conventional experiments require 𝑁C = Ω(2𝑛) experiments. This
yields a separation of 𝑁C = Ω(𝑁𝑎

Q), where 𝑎 = − log(2)/(2 log(1− 4𝜖)) = 𝒪(𝜖).

L.4. A class of states and properties

For certain states and properties, conventional experiments can be very powerful. For example,
classical shadow tomography [29] is a class of conventional experiments based on randomized measure-
ments that can be used to make accurate prediction for many properties. Here, we give an example



68

where there is a large separation between conventional experiments with perfect measurements and
noisy quantum-enhanced experiments. We consider a distribution over the unknown 𝑛-qubit separable
states 𝜌 and the properties as follows.

With probability 1/(4𝑛 − 1), we sample a Pauli observable 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛}. Then
with probability 1/2, we consider the unknown state 𝜌 to be the maximally mixed state 𝐼/2𝑛. With
probability 1/4, we consider the unknown state 𝜌 to be(︃

𝑛⨂︁
ℓ=1

𝑈2ℓ−1

)︃(︂
𝐼 + 0.9𝑃

2𝑛

)︂(︃ 𝑛⨂︁
ℓ=1

𝑈−1
2ℓ−1

)︃
. (L60)

With probability 1/4, we consider the unknown state 𝜌 to be(︃
𝑛⨂︁
ℓ=1

𝑈2ℓ−1

)︃(︂
𝐼 − 0.9𝑃

2𝑛

)︂(︃ 𝑛⨂︁
ℓ=1

𝑈−1
2ℓ−1

)︃
. (L61)

The property we would like to predict is the absolute value of the expectation value of

𝑂 =

(︃
𝑛⨂︁
ℓ=1

𝑈2ℓ−1

)︃
𝑃

(︃
𝑛⨂︁
ℓ=1

𝑈−1
2ℓ−1

)︃
. (L62)

We tell the learning algorithm both the Pauli observable 𝑃 and the above observable 𝑂. When
𝜌 = 𝐼/2𝑛, the property is equal to zero. However, when 𝜌 is an alternative state that is not 𝐼/2𝑛, the
property is equal to 0.9. Hence, making accurate prediction in this task is equivalent to distinguishing
if 𝜌 is the maximally mixed state 𝐼/2𝑛.

L.4.a. Characterization of the probability distribution

Both the states 𝐼/2𝑛 and (𝐼 ± 0.9𝑃 )/2𝑛 are separable states and can be represented as a classical
probability distribution over tensor products of the single-qubit stabilizer states

𝑆 =
{︀
|0⟩⟨0|, |1⟩⟨1|, |+⟩⟨+|, |−⟩⟨−|, |𝑦+⟩⟨𝑦+|, |𝑦−⟩⟨𝑦−|

}︀
. (L63)

The physical system 𝜌 is a classical probability mixture over tensor products of 𝑈2ℓ−1𝜎ℓ𝑈
−1
2ℓ−1 for

ℓ = 1, . . . , 𝑛, where 𝜎ℓ is a single-qubit stabilizer state. Hence, we have

𝜌 =
∑︁

𝜎ℓ∈𝑆,∀ℓ=1,...,𝑛

𝑝(𝜎1, . . . , 𝜎𝑛)(𝑈1𝜎1𝑈
−1
1 )⊗ . . .⊗ (𝑈2𝑛−1𝜎𝑛𝑈

−1
2𝑛−1). (L64)

There are multiple distinct probability distributions that lead to the same state 𝜌. Here, we consider
the following classical distribution based on the chosen Pauli observable 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛}
for the ease of analysis.

• 𝜌 is the maximally mixed state: For each ℓ = 1, . . . , 𝑛, we consider the following. If 𝑃ℓ = 𝐼,𝑋, 𝑌 ,
we choose 𝜎ℓ from the uniform distribution over |0⟩⟨0|, |1⟩⟨1|. If 𝑃ℓ = 𝑍, we choose 𝜎ℓ from the
uniform distribution over |+⟩⟨+|, |−⟩⟨−|.

• 𝜌 is a locally rotated (𝐼 ± 0.9𝑃 )/2𝑛: The state (𝐼 ± 0.9𝑃 )/2𝑛 is equal to the uniform mixture
of the maximally mixed state and the state (𝐼 ± 𝑃 )/2𝑛. With probability 0.1, we prepare 𝜌
the same way as the maximally mixed state given above. With probability 0.9, we prepare 𝜌 as
(𝐼 ± 𝑃 )/2𝑛. For each ℓ = 1, . . . , 𝑛, we consider the following. If 𝑃ℓ = 𝐼, we choose a 𝜎ℓ to be a
uniform distribution over |0⟩⟨0|, |1⟩⟨1|. If 𝑃ℓ ̸= 𝐼, we choose 𝜎ℓ to be one of the eigenstate of 𝑃ℓ.
When 𝑃ℓ is not the last non-identity Pauli operator, we choose 𝜎ℓ uniformly at random. When
𝑃ℓ is the last non-identity Pauli operator, we choose 𝜎ℓ deterministically based on the choice of
𝜎ℓ′ for ℓ′ < ℓ where 𝑃ℓ′ is not an identity. The determinisitic choice satisfies a parity constraint
given by the state (𝐼 ± 𝑃 )/2𝑛.

Other choices of the classical probability distribution that give rise to the same state would yield
exactly the same result but the analysis could be slightly more complex.
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L.5. Upper bound for noisy quantum-enhanced experiments

We provide a sample complexity upper bound for quantum-enhanced experiments using the noisy
quantum device that we partially learned. The quantum-enhanced experiment we implement loads in
two copies of the physical system 𝜌 and perform an entangled measurement across the two copies.

L.5.a. Detailed procedure

In the noisy quantum-enhanced experiments, we utilize the noisy quantum device and repeat the
following for 𝑁Q/2 times.

1. Prepare the initial product state followed by a layer of single-qubit gates 𝑔𝑖,0 for all qubit
𝑖 = 1, . . . , 2𝑛.

2. Load the physical system 𝜌 into the left hand side of the 𝑛× 2 grid.

3. Apply the entangling layer ℰℓ=1,𝑠⊗ . . .⊗ℰℓ=𝑛,𝑠, which is approximately equal to applying SWAP
gates between left and right side of the 𝑛× 2 grid from Eq. (L58).

4. Load the physical system 𝜌 into the left hand side of the 𝑛× 2 grid again.

5. Apply the entangling layer ℰℓ=1,𝑒 ⊗ . . . ⊗ ℰℓ=𝑛,𝑒, which is approximately equal to rotating the
pairs of qubits into a Bell basis from Eq. (L59).

6. Apply a layer of single-qubit gates 𝑔𝑖,6 for all qubit 𝑖 = 1, . . . , 2𝑛. Then measure using the
unknown product measurement.

7. Store the measurement outcome as 𝑏𝑡,𝑖, ∀𝑖 = 1, . . . , 2𝑛 for the 𝑡-th experiment.

After the 𝑁Q/2 experiments using 𝑁Q copies of the physical system 𝜌, when we are given a Pauli
observable 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛, we compute the following,

Ξ ≡ 2

𝑁Q

𝑁Q/2∑︁
𝑡=1

𝑛∏︁
ℓ=1

⟨𝛽(𝑏𝑡,2ℓ−1, 𝑏𝑡,2ℓ)|𝑃ℓ ⊗ 𝑃ℓ |𝛽(𝑏𝑡,2ℓ−1, 𝑏𝑡,2ℓ)⟩ , (L65)

where |𝛽(𝑥, 𝑦)⟩ is the Bell state,

|𝛽(𝑥, 𝑦)⟩ =
(︂ |0, 𝑦⟩+ (−1)𝑥 |1, 1− 𝑦⟩√

2

)︂
. (L66)

To understand what is happening, consider 𝑈𝑖 = 𝐼, ∀𝑖. When all the operations are perfect, the
quantum-enhanced experiment is equivalent to storing two copies of 𝜌 in the 2𝑛 qubits and measuring
every pair of corresponding qubits in the Bell basis. Bell basis simultaneously diagonalizes 𝑃 ⊗ 𝑃 for
all 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛. Hence, we can simultaneously predict tr((𝑃 ⊗ 𝑃 )(𝜌⊗ 𝜌)) = tr(𝑃𝜌)2.

L.5.b. Noise analysis

We analyze how noise affects the quantum-enhanced experiments. Suppose the first sample of 𝜌 is

(𝑈1𝜎
𝐴
1 𝑈

−1
1 )⊗ . . .⊗ (𝑈2𝑛−1𝜎

𝐴
𝑛𝑈

−1
2𝑛−1), (L67)

and the second sample of 𝜌 is

(𝑈1𝜎
𝐵
1 𝑈

−1
1 )⊗ . . .⊗ (𝑈2𝑛−1𝜎

𝐵
𝑛 𝑈

−1
2𝑛−1). (L68)
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Let us focus on a pair of qubits 2ℓ − 1, 2ℓ for ℓ = 1, . . . , 𝑛. From Eq. (L55), after the first two steps,
the pair of qubits is in a state 𝜌(2ℓ−1,2ℓ),𝑎 with⃦⃦⃦

𝜌(2ℓ−1,2ℓ),𝑎 − (𝑈2ℓ−1𝜎
𝐴
ℓ 𝑈

−1
2ℓ−1)⊗ (𝑈2ℓ|0⟩⟨0|𝑈−1

2ℓ )
⃦⃦⃦
1
≤ 𝜖. (L69)

After the third and fourth step, the pair of qubits is now in a state 𝜌(2ℓ−1,2ℓ),𝑏 with⃦⃦⃦
𝜌(2ℓ−1,2ℓ),𝑏 − (𝑈2ℓ−1𝜎

𝐵
ℓ 𝑈

−1
2ℓ−1)⊗ (𝑈2ℓ𝜎

𝐴
ℓ 𝑈

−1
2ℓ )
⃦⃦⃦
1
≤ 2𝜖 (L70)

using Eq. (L58). After the fifth step, the two-qubit state is now 𝜌(2ℓ−1,2ℓ),𝑐. From Eq. (L59), we have⃦⃦⃦
𝜌(2ℓ−1,2ℓ),𝑐 − (𝑈2ℓ−1 ⊗ 𝑈2ℓ)BELL(𝜎

𝐵
ℓ ⊗ 𝜎𝐴ℓ )BELL†(𝑈−1

2ℓ−1 ⊗ 𝑈−1
2ℓ )
⃦⃦⃦
1
≤ 3𝜖. (L71)

In the sixth and seventh step, we measure the two-qubit state 𝜌(2ℓ−1,2ℓ),𝑐 with a two-qubit product
POVM. The two-qubit product POVM is given by

{𝑀 (2ℓ−1,6,6)
0 ⊗𝑀 (2ℓ,6,6)

0 ,𝑀
(2ℓ−1,6,6)
0 ⊗𝑀 (2ℓ,6,6)

1 ,𝑀
(2ℓ−1,6,6)
1 ⊗𝑀 (2ℓ,6,6)

0 ,𝑀
(2ℓ−1,6,6)
1 ⊗𝑀 (2ℓ,6,6)

1 }, (L72)

where the approximation error is given in Eq. (L56).
We now combine with the classical post-processing in Eq. (L65). Given a Pauli observable 𝑃 ∈

{𝐼,𝑋, 𝑌, 𝑍}⊗𝑛. For each experiment, we can show that we are measuring the two-qubit state 𝜌(2ℓ−1,2ℓ),𝑐

with an observable

𝑂(2ℓ−1,2ℓ) ≡
∑︁

𝑥,𝑦∈{0,1}

⟨𝛽(𝑥, 𝑦)|𝑃ℓ ⊗ 𝑃ℓ |𝛽(𝑥, 𝑦)⟩𝑀 (2ℓ−1,6,6)
𝑥 ⊗𝑀 (2ℓ,6,6)

𝑦 . (L73)

The observable 𝑂(2ℓ−1,2ℓ) differs from the ideal observable∑︁
𝑥,𝑦∈{0,1}

⟨𝛽(𝑥, 𝑦)|𝑃ℓ ⊗ 𝑃ℓ |𝛽(𝑥, 𝑦)⟩ (𝑈2ℓ−1|𝑥⟩⟨𝑥|𝑈−1
2ℓ−1)⊗ (𝑈2ℓ|𝑦⟩⟨𝑦|𝑈−1

2ℓ ) (L74)

by at most 𝜖 error in ‖·‖∞. Using triangle inequality, we have⃒⃒⃒⃒
⃒tr(︁𝑂(2ℓ−1,2ℓ)𝜌(2ℓ−1,2ℓ),𝑐

)︁
−
∑︁
𝑥,𝑦

⟨𝛽(𝑥, 𝑦)|𝑃ℓ ⊗ 𝑃ℓ |𝛽(𝑥, 𝑦)⟩ ⟨𝛽(𝑥, 𝑦)| (𝜎𝐵ℓ ⊗ 𝜎𝐴ℓ ) |𝛽(𝑥, 𝑦)⟩
⃒⃒⃒⃒
⃒ ≤ 4𝜖. (L75)

Because Bell basis simultaneously diagonalizes {𝐼 ⊗ 𝐼,𝑋 ⊗𝑋,𝑌 ⊗ 𝑌, 𝑍 ⊗ 𝑍}, we have∑︁
𝑥,𝑦

⟨𝛽(𝑥, 𝑦)|𝑃ℓ ⊗ 𝑃ℓ |𝛽(𝑥, 𝑦)⟩ ⟨𝛽(𝑥, 𝑦)| (𝜎𝐵ℓ ⊗ 𝜎𝐴ℓ ) |𝛽(𝑥, 𝑦)⟩ = tr(𝑃ℓ𝜎
𝐵
ℓ ) tr(𝑃ℓ𝜎

𝐴
ℓ ). (L76)

Recall that there exists a CPTP map ℰℓ such that 𝜌(2ℓ−1,2ℓ),𝑐 = ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ ). Hence, we have⃒⃒⃒
tr
(︁
𝑂(2ℓ−1,2ℓ)ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ )

)︁
− tr(𝑃ℓ𝜎

𝐴
ℓ ) tr(𝑃ℓ𝜎

𝐵
ℓ )
⃒⃒⃒
≤ 4𝜖. (L77)

Furthermore, when 𝑃ℓ = 𝐼, we have

tr
(︁
𝑂(2ℓ−1,2ℓ)ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ )

)︁
= tr(𝑃ℓ𝜎

𝐴
ℓ ) tr(𝑃ℓ𝜎

𝐵
ℓ ) = 1. (L78)

The two characterizations above will be crucial for the sample complexity analysis.
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L.5.c. Sample complexity analysis

We use the probability distribution given in Appendix L.4.a to analyze the expectation value of Ξ
in Eq. (L65). Combining with Eq. (L64), we have

E[Ξ] =
∑︁
𝜎𝐴
ℓ ∈𝑆,

∀ℓ=1,...,𝑛

∑︁
𝜎𝐵
ℓ ∈𝑆,

∀ℓ=1,...,𝑛

𝑝(𝜎𝐴1 , . . . , 𝜎
𝐴
𝑛 )𝑝(𝜎

𝐵
1 , . . . , 𝜎

𝐵
𝑛 )

𝑛∏︁
ℓ=1

tr
(︁
𝑂(2ℓ−1,2ℓ)ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ )

)︁
. (L79)

We separate the analysis into two cases.

• 𝜌 is the maximally mixed state: We only consider 𝜎𝐴, 𝜎𝐵 that appear with nonzero proba-
bility. For all ℓ = 1, . . . , 𝑛, we consider whether 𝑃ℓ is equal to 𝐼. If 𝑃ℓ ̸= 𝐼, then we have
tr(𝑃ℓ𝜎

𝐴
ℓ ) tr(𝑃ℓ𝜎

𝐵
ℓ ) = 0, hence

| tr
(︁
𝑂(2ℓ−1,2ℓ)ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ )

)︁
| ≤ 4𝜖 (L80)

from Eq. (L77). If 𝑃ℓ = 𝐼, from Eq. (L78), we have

tr
(︁
𝑂(2ℓ−1,2ℓ)ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ )

)︁
= 1. (L81)

Together, we have ⃒⃒⃒⃒
⃒
𝑛∏︁
ℓ=1

tr
(︁
𝑂(2ℓ−1,2ℓ)ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ )

)︁⃒⃒⃒⃒⃒ ≤ (4𝜖)#(𝑃ℓ ̸=𝐼), (L82)

where #(𝑃ℓ ̸= 𝐼) is the number of 𝑃ℓ, ∀ℓ = 1, . . . , 𝑛 that is not equal to identity 𝐼. Therefore
we conclude that

|E[Ξ]| ≤ (4𝜖)#(𝑃ℓ ̸=𝐼). (L83)

• 𝜌 is a locally rotated (𝐼±0.9𝑃 )/2𝑛: There is a probability of 0.19 such that at least one of 𝜎𝐴, 𝜎𝐵

is sampled according to the distribution for the maximally mixed state. The same analysis as
the case for maximally mixed state shows that we have⃒⃒⃒⃒

⃒
𝑛∏︁
ℓ=1

tr
(︁
𝑂(2ℓ−1,2ℓ)ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ )

)︁⃒⃒⃒⃒⃒ ≤ (4𝜖)#(𝑃ℓ ̸=𝐼). (L84)

For a probability of 0.81, we have both 𝜎𝐴 and 𝜎𝐵 are sampled according to the probability
distribution for (𝐼 ±𝑃 )/2𝑛 defined in Appendix L.4.a. We focus on 𝜎𝐴 and 𝜎𝐵 that occur with
non-zero probability. We consider all ℓ = 1, . . . , 𝑛. We again separate into two cases: 𝑃ℓ ̸= 𝐼
and 𝑃ℓ = 𝐼.

– If 𝑃ℓ ̸= 𝐼, then we have tr(𝑃ℓ𝜎
𝐴
ℓ ) tr(𝑃ℓ𝜎

𝐵
ℓ ) ∈ {1,−1}. If tr(𝑃ℓ𝜎𝐴ℓ ) tr(𝑃ℓ𝜎

𝐵
ℓ ) = 1, then

tr
(︁
𝑂(2ℓ−1,2ℓ)ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ )

)︁
≥ 1− 4𝜖 (L85)

from Eq. (L77). In contrast, if tr(𝑃ℓ𝜎𝐴ℓ ) tr(𝑃ℓ𝜎
𝐵
ℓ ) = −1, then

tr
(︁
𝑂(2ℓ−1,2ℓ)ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ )

)︁
≤ −1 + 4𝜖. (L86)

– If 𝑃ℓ = 𝐼, from Eq. (L78), we have

tr
(︁
𝑂(2ℓ−1,2ℓ)ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ )

)︁
= 1. (L87)
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Furthermore, the parity constraint in the probability distribution over 𝜎𝐴, 𝜎𝐵 given in Ap-
pendix L.4.a shows that

𝑛∏︁
ℓ=1

tr(𝑃ℓ𝜎
𝐴
ℓ ) tr(𝑃ℓ𝜎

𝐵
ℓ ) = 1. (L88)

Hence, we have

𝑛∏︁
ℓ=1

tr
(︁
𝑂(2ℓ−1,2ℓ)ℰℓ(𝜎𝐴ℓ ⊗ 𝜎𝐵ℓ )

)︁
≥ (1− 4𝜖)#(𝑃ℓ ̸=𝐼). (L89)

Combining with Eq. (L84), we can conclude that

E[Ξ] ≥ 0.81(1− 4𝜖)#(𝑃ℓ ̸=𝐼) − 0.19(4𝜖)#(𝑃ℓ ̸=𝐼). (L90)

Recall from Eq. (L65), Ξ is the average over 𝑁Q/2 independent random variables bounded between
[−1, 1]. Hence, by Hoeffding’s inequality, we need

𝑁Q = 𝒪(log(1/𝛿)/𝜖2) (L91)

to estimate E[Ξ] to 𝜖 error with probability at least 1− 𝛿. In order to distinguish between 𝜌 being the
maximally mixed state or not, we need to estimate E[Ξ] to an error of at most

0.81(1− 4𝜖)#(𝑃ℓ ̸=𝐼) − 0.19(4𝜖)#(𝑃ℓ ̸=𝐼) − (4𝜖)#(𝑃ℓ ̸=𝐼). (L92)

For 𝜖 less than a constant and 𝑛 sufficiently large, the above function is minimized at #(𝑃ℓ ̸= 𝐼) = 𝑛.
In order to predict accurately with a probability at least 0.99, the sample complexity for the noisy
quantum-enhanced experiment is

𝑁Q = 𝒪
(︂

1

(1− 4𝜖)2𝑛

)︂
. (L93)

This concludes the proof for the first part of Theorem L.3.

L.6. Lower bound for noiseless conventional experiments

We give a sample complexity lower bound for conventional experiments based on adaptive POVM
measurements. We do not assume the presence of any noise in conventional experiments. The proof
uses techniques proposed in [9, 28, 30]. In particular, the proof is closely related to one of the proofs
in [28] up to minor changes. We present a concise proof here for completeness.

A learning algorithm using noiseless conventional experiments is a rooted tree. At every node, we
perform a POVM on 𝜌. Based on the POVM outcome, we move to a child node of the node. Because
a rank-1 POVM {𝑤𝑏|𝜓𝑏⟩⟨𝜓𝑏|}𝑏 is always at least as powerful as general POVM [9, 30], we will only
consider rank-1 POVMs. After 𝑁𝒞 experiments, we arrive at a leaf node of the tree at depth 𝑁𝒞 .
Depending on the unknown physical state 𝜌, the probability distribution over the leaf nodes will be
different. We write the probability distribution as

𝑝𝜌(ℓ) =

𝑁C∏︁
𝑡=1

𝑤𝑡 ⟨𝜓𝑡| 𝜌 |𝜓𝑡⟩ ,∀ℓ : leaf nodes, (L94)

where 𝑤1|𝜓1⟩⟨𝜓1|, . . . , 𝑤𝑁C
|𝜓C⟩⟨𝜓C| are the POVM elements associated to the outcomes of the 𝑁C

measurements that ends up at the leaf node ℓ.
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After the experiments, we obtain a Pauli observable 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛} and the assocaited
observable 𝑂 = (

⨂︀𝑛
ℓ=1 𝑈2ℓ−1)𝑃

(︀⨂︀𝑛
ℓ=1 𝑈

−1
2ℓ−1

)︀
. Suppose we can use the conventional experiments to

classify between maximally mixed state

𝜌mm = 𝐼/2𝑛 (L95)

and the alternative states

𝜌𝑆,𝑃 =

(︃
𝑛⨂︁
ℓ=1

𝑈2ℓ−1

)︃(︂
𝐼 + 𝑆0.9𝑃

2𝑛

)︂(︃ 𝑛⨂︁
ℓ=1

𝑈−1
2ℓ−1

)︃
(L96)

under the knowledge of 𝑃 and 𝑈𝑖,∀𝑖, where 𝑆 ∈ {±1}, 𝑃 ∈ {𝐼,𝑋, 𝑌, 𝑍}⊗𝑛 ∖ {𝐼⊗𝑛}. Then the average
total variation distance between the leaf node distribution of the maximally mixed state and the
alternative states 𝜌𝑠,𝑃 must be greater than a constant,

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

[︃
1

2

∑︁
ℓ:leaf

⃒⃒⃒⃒
𝑝ℓ(𝜌mm)− E

𝑆∈{±1}
𝑝ℓ (𝜌𝑆,𝑃 )

⃒⃒⃒⃒ ]︃
= Ω(1). (L97)

The expectation over 𝑆 ∈ {±1} is in the inside because the knowledge of 𝑆 is not revealed. On the
other hand, the expectation over 𝑃 is on the outside because the knowledge of 𝑃 is revealed.

We now upper bound the average total variation distance with 𝑁𝒞 .

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

[︃
1

2

∑︁
ℓ:leaf

⃒⃒⃒⃒
𝑝ℓ(𝜌mm)− E

𝑆∈{±1}
𝑝ℓ (𝜌𝑆,𝑃 )

⃒⃒⃒⃒ ]︃
(L98)

= E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

[︃ ∑︁
ℓ:leaf

max

(︂
0, 𝑝ℓ(𝜌mm)− E

𝑆∈{±1}
𝑝ℓ (𝜌𝑆,𝑃 )

)︂]︃
(L99)

= E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

[︃ ∑︁
ℓ:leaf

𝑝ℓ(𝜌mm)max

(︂
0, 1− E

𝑆∈{±1}

𝑝ℓ (𝜌𝑆,𝑃 )

𝑝ℓ(𝜌mm)

)︂]︃
. (L100)

We lower bound the following term,

E
𝑆∈{±1}

𝑝ℓ (𝜌𝑆,𝑃 )

𝑝ℓ(𝜌mm)
= E

𝑆∈{±1}

𝑁C∏︁
𝑡=1

⟨𝜓𝑡|
(︃

𝑛⨂︁
ℓ=1

𝑈2ℓ−1

)︃
(𝐼 + 𝑆0.9𝑃 )

(︃
𝑛⨂︁
ℓ=1

𝑈−1
2ℓ−1

)︃
|𝜓𝑡⟩ (L101)

= E
𝑆∈{±1}

𝑁C∏︁
𝑡=1

(︁
1 + 0.9𝑆 ⟨𝜓𝑡|𝑃 |𝜓𝑡⟩

)︁
(L102)

≥ exp

[︃
𝑁C∑︁
𝑡=1

E
𝑆∈{±1}

log
(︁
1 + 0.9𝑆 ⟨𝜓𝑡|𝑃 |𝜓𝑡⟩

)︁]︃
(L103)

= exp

[︃
1

2

𝑁C∑︁
𝑡=1

log
(︁
1− 0.81 ⟨𝜓𝑡|𝑃 |𝜓𝑡⟩

2
)︁]︃

(L104)

=

𝑁C∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜓𝑡|𝑃 |𝜓𝑡⟩

2
. (L105)

The second line is a definition of |𝜓𝑡⟩ =
(︀⨂︀𝑛

ℓ=1 𝑈
−1
2ℓ−1

)︀
|𝜓𝑡⟩. The third line uses Jensen’s inequality.

Hence, we can upper bound the average total variation distance as

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

[︃
1

2

∑︁
ℓ:leaf

⃒⃒⃒⃒
𝑝ℓ(𝜌mm)− E

𝑆∈{±1}
𝑝ℓ (𝜌𝑆,𝑃 )

⃒⃒⃒⃒ ]︃
(L106)
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≤ E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

[︃ ∑︁
ℓ:leaf

𝑝ℓ(𝜌mm)max

(︃
0, 1−

𝑁C∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜓𝑡|𝑃 |𝜓𝑡⟩

2

)︃]︃
(L107)

=
∑︁
ℓ:leaf

𝑝ℓ(𝜌mm)

(︃
1− E

𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑁C∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜓𝑡|𝑃 |𝜓𝑡⟩

2

)︃
. (L108)

We can remove the max(0, ·) because 1−∏︀𝑁C
𝑡=1

√︁
1− 0.81 ⟨𝜓𝑡|𝑃 |𝜓𝑡⟩

2 ≥ 0. We bound the term,

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑁C∏︁
𝑡=1

√︁
1− 0.81 ⟨𝜓𝑡|𝑃 |𝜓𝑡⟩

2
(L109)

≥ exp

[︃
1

2

𝑁C∑︁
𝑡=1

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

log
(︁
1− 0.81 ⟨𝜓𝑡|𝑃 |𝜓𝑡⟩

2
)︁]︃

(L110)

≥ exp

[︃
−1.215

𝑁C∑︁
𝑡=1

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

⟨𝜓𝑡|𝑃 |𝜓𝑡⟩
2

]︃
(L111)

≥ 1− 1.215

𝑁C∑︁
𝑡=1

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

⟨𝜓𝑡|𝑃 |𝜓𝑡⟩
2

(L112)

= 1− 1.215

𝑁C∑︁
𝑡=1

1

2𝑛 + 1
= 1− 1.215𝑁C

2𝑛 + 1
. (L113)

The second line uses Jensen’s inequality. The third line uses log(1 − 𝑥) ≥ −3𝑥,∀𝑥 ∈ [0, 0.94]. The
fourth line uses exp(𝑥) ≥ 1 + 𝑥,∀𝑥 ∈ R. The last line uses

E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

𝑃 ⊗ 𝑃 =
2𝑛SWAP− 𝐼 ⊗ 𝐼

4𝑛 − 1
, (L114)

hence E𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛} ⟨𝜓𝑡|𝑃 |𝜓𝑡⟩
2
= 2𝑛−1

4𝑛−1 = 1
2𝑛+1 . Combining with Eq. (L97), we have

Ω(1) = E
𝑃∈{𝐼,𝑋,𝑌,𝑍}⊗𝑛∖{𝐼⊗𝑛}

[︃
1

2

∑︁
ℓ:leaf

⃒⃒⃒⃒
𝑝ℓ(𝜌mm)− E

𝑆∈{±1}
𝑝ℓ (𝜌𝑆,𝑃 )

⃒⃒⃒⃒ ]︃
(L115)

≤
∑︁
ℓ:leaf

𝑝ℓ(𝜌mm)
1.215𝑁C

2𝑛 + 1
=

1.215𝑁C

2𝑛 + 1
. (L116)

Thus we arrive at the desired lower bound,

𝑁C = Ω(2𝑛), (L117)

which concludes the proof of Theorem L.3.
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