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• A central goal of science is to learn how our universe operates. 

• Because our universe is inherently quantum, the ability to efficiently learn 
in the quantum world could lead to many advances.
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• To accelerate/automate quantum science, it is critical to understand how to 
design better algorithms to learn in the quantum universe.
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• But can we trust the mental model learned by humans and machines? 

• Humans hallucinate all the time, let alone machine learning algorithms.
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• But can we trust the mental model learned by humans and machines? 

• Even highly intelligent AI models can hallucinate their identities.
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• The ability to certify/falsify predictions, models, properties, conclusions, etc. 

is the cornerstone of any scientific endeavor.
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inherently heuristics—unpredictable by first principle.
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Motivation
• How to design rigorous certification protocols to harness and validate 

these empirically powerful but heuristic emergent capabilities? 
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Question: Hamiltonians

External world

A physical system is described 
by its Hamiltonian. 
 
How to learn Hamiltonian 
(coefficients, structure, etc.)? 
Hint: P44, P46, P77
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How to learn a quantum circuit 
for preparing a state, for 
evolving under a unitary, etc.? 
Hint: P42
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consisted of qubits. 

How to efficiently learn systems 
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Hint: P87, P114
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Question: Approximate Model

External world

How to learn the closest 
approximate model describing 
the underlying physics? 
Hint: S2
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Question: Hardness
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Are basic physical properties 
fundamentally hard to learn? 

(time, causal cone, topological 
order, entanglement) 
Hint: L6, S6, P104
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A useful playground

State ρ

External world

1. What can/cannot be learned? 

2. What can/cannot be certified?
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State ρ

External world

Given a local H. 
 
Can the AI agent efficiently 
certify that  is close to the 
ground state of H (in energy)? 
Hint 1: No. 
Hint 2: Take any hard H. 
Hint 3: Put a local min w. fine-tuned energy.

ρ

Question: Low temperature
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External world

I try to create  in 
the lab. Did I succeed?
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My trained AI says the 
state is . Is that right?|ψ⟩

Certifying Gibbs Sampling

Hard for both 
low and high 
temperatures
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State ρ

External world

I try to create  in 
the lab. Did I succeed?

|ψ⟩

My trained AI says the 
state is . Is that right?|ψ⟩

Certifying Heuristic AI

Or this?

I think it’s the Gibbs state 
of . Is that true?H



• We have a desired -qubit state , which is our target state. 

• We have an -qubit state  created in the experimental lab. 

• Task: Test if  is close to  or not. 

                 (  is close to 1)

n |ψ⟩

n ρ

ρ |ψ⟩⟨ψ|

⟨ψ|ρ|ψ⟩

State Certification



• Approach 0: Direct measurement 

• Advantage: 

Only needs depth-  random Clifford circuits on  

• Challenge: 

Implementing depth-  random Clifford circuits 

remains experimentally difficult.

n ρ

n
Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

U†
Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Quantum state Single-qubit 
Measurement

How to Certify?
|ψ⟩ = U|0n⟩

State ρ



• Approach 0: Direct measurement 

• Challenge: 

If we can assume  is perfect, then  should be perfect too. 

In this world,  can be created to be  perfectly. 

So we don’t need to do any certification. 
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• Approach 0: Direct measurement 

• Challenge: 

If we can assume  is perfect, then  should be perfect too. 

In this world,  can be created to be  perfectly. 
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Question: Simple states

State ρ

External world

• How to certify  

• How to certify ? 

• How to certify toric code g.s.? 
 
Do it without 2-qubit gates.

| +n ⟩?
|0n⟩ − |1n⟩

2



• Approach 1: Classical shadow formalism (global 3-design) 

• Advantage: 

Only needs depth-  random Clifford circuits on  

• Challenge: 

Implementing depth-  random Clifford circuits 

remains experimentally difficult.

n ρ

n
Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Random 
Clifford Circuit

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Quantum state Single-qubit 
Measurement

How to Certify?

State ρ

|ψ⟩ = U|0n⟩



• Approach 1: Classical shadow formalism (global 3-design) 

• Advantage: 

Only needs to apply random circuits forming 3-designs on  

• Challenge: 

Implementing depth-  random Clifford circuits 

is still experimentally challenging.
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n
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Only needs to apply random circuits forming 3-designs on  

• Challenge: 

Implementing random -designs can be challenging. 

Runtime can be extremely high (needs ).
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How to Certify?
• Approach 1: Classical shadow formalism (global 3-design) 

• Advantage: 

Only needs to apply random circuits forming 3-designs on  

• Challenge: 

Implementing random -designs can be challenging. 

Runtime can be extremely high (needs ).

ρ

3

|⟨s|ψ⟩|2

 is the single-shot shadow|s⟩

|ψ⟩ = U|0n⟩



Question: Any states

State ρ

External world

How to certify any state  w/ 
single-qubit measurements? 
(non-efficient is ok) 

Hint 1: Want to estimate . 
Hint 2: .

|ψ⟩

Tr(|ψ⟩⟨ψ|ρ)
|ψ⟩⟨ψ| = ∑

P∈{I,X,Y,Z}⊗n

αPP



• Approach 2: Random Pauli measurements 

• Advantage: 

Only needs depth-  random Clifford circuits on  

• Challenge: 

Implementing depth-  random Clifford circuits 

remains experimentally difficult.

n ρ

n Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Quantum state Single-qubit 
Measurement

How to Certify?

State ρ

|ψ⟩ = U|0n⟩



• Approach 2: Random Pauli measurements 

• Advantage: 

Only needs single-qubit measurements on  

• Challenge: 

Requires exp( ) measurements for most target  

especially when  is highly entangled.

ρ

n |ψ⟩

|ψ⟩

How to Certify? |ψ⟩ = U|0n⟩



• Approach 2: Random Pauli measurements 

• Advantage: 

Only needs single-qubit measurements on  

• Challenge: 

Requires exp( ) measurements for most target  

especially when  is highly entangled.

ρ

n |ψ⟩

|ψ⟩

How to Certify? |ψ⟩ = U|0n⟩



• Approach 3: Cross-entropy benchmark 

• Advantage: 

Only needs depth-  random Clifford circuits on  

• Challenge: 

Implementing depth-  random Clifford circuits 

remains experimentally difficult.

n ρ

n Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Quantum state Single-qubit 
Measurement 
(all Z bases)

How to Certify?

State ρ

|ψ⟩ = U|0n⟩

XEB =
2n𝔼x∼⟨x|ρ|x⟩|⟨x|ψ⟩|2 − 1
2n𝔼x∼|⟨x|ψ⟩|2|⟨x|ψ⟩|2 − 1

,



Question: XEB

State ρ

External world

If   , 

is XEB a good certifier?

ρ ≈ (1 − p) ⋅ |ψ⟩⟨ψ|+p ⋅
I

2n

|ψ⟩ = U|0n⟩

XEB =
2n𝔼x∼⟨x|ρ|x⟩|⟨x|ψ⟩|2 − 1
2n𝔼x∼|⟨x|ψ⟩|2|⟨x|ψ⟩|2 − 1

,



Question: XEB

State ρ

External world

Does there exist  and  such 
that  and ?

ρ |ψ⟩
XEB = 1 ⟨ψ|ρ|ψ⟩ ≈ 0

|ψ⟩ = U|0n⟩

XEB =
2n𝔼x∼⟨x|ρ|x⟩|⟨x|ψ⟩|2 − 1
2n𝔼x∼|⟨x|ψ⟩|2|⟨x|ψ⟩|2 − 1

,



• Approach 3: Cross-entropy benchmark 

• Advantage: 

Only needs depth-  random Clifford circuits on  

• Challenge: 

Implementing depth-  random Clifford circuits 

remains experimentally difficult.

n ρ

n Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Quantum state Single-qubit 
Measurement 
(all Z bases)

How to Certify?

State ρ

|ψ⟩ = U|0n⟩

XEB =
2n𝔼x∼⟨x|ρ|x⟩|⟨x|ψ⟩|2 − 1
2n𝔼x∼|⟨x|ψ⟩|2|⟨x|ψ⟩|2 − 1

,



• Approach 3: Cross-entropy benchmark (XEB) 

• Advantage: 

Only needs single-qubit measurements (Z-basis) on  

• Challenge: 
Does not rigorously address the certification task. 

 can be far from  despite perfect XEB score.

ρ

ρ |ψ⟩⟨ψ|

How to Certify?



• Approach 3: Cross-entropy benchmark (XEB) 

• Advantage: 

Only needs single-qubit measurements (Z-basis) on  

• Challenge: 
Does not rigorously address the certification task. 

 can be far from  despite perfect XEB score.

ρ

ρ |ψ⟩⟨ψ|

How to Certify?



Question: Generic State

State ρ

External world

Can XEB be used to certify 
almost any state  w/ few 
single-qubit measurements?

|ψ⟩



Question: Generic State

State ρ

External world

Can XEB be used to certify 
almost any state  w/ few 
single-qubit measurements? 
Hint 1: No.

|ψ⟩



Question: Generic State

State ρ

External world

Can XEB be used to certify 
almost any state  w/ few 
single-qubit measurements? 
Hint 1: No. 
Hint 2: Dephasing noise.

|ψ⟩



Question: Generic and Rigorous

State ρ

External world

Can we certify almost any state 
 w/ few single-qubit 

measurements?
|ψ⟩



• Repeat the following measurement a few times.

Measurement Protocol

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Quantum state Single-qubit 
Measurement



• Pick a random qubit .x

Measurement Protocol

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Quantum state Single-qubit 
Measurement



• Pick a random qubit . Measure all except qubit  in Z basis.x x

Measurement Protocol

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Quantum state Single-qubit 
Measurement

Z

ZZ

Z

Z

Z

Z



• Pick a random qubit . Measure  in random X/Y/Z basis.x x

Measurement Protocol

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Quantum state Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Single-qubit 
Measurement

X/Y/Z



• That’s it.

Measurement Protocol

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Quantum state Single-qubit 
Measurement

X/Y/Z



Question: Sufficiency

State ρ

External world

Is the measurement data 
sufficient to certify: 

•  or ? 

• any product state? 

• any ?

|0n⟩ | +n ⟩

1

2n ∑
x∈{0,1}n

(−1) f(x)|x⟩



• The measurement outcomes on       specifies two bitstrings 

 that differ by exactly one bit.(b0, b1)

Postprocessing

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Single-qubit 
Measurement

X/Y/Z000

001 011

010

100 110

111

= b1= b0



• The ideal post-measurement 1-qubit state  on qubit  is 

proportional to .

|ψb0,b1
⟩ x

⟨b0|ψ⟩|0⟩ + ⟨b1|ψ⟩|1⟩

Postprocessing

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Single-qubit 
Measurement

X/Y/Z000

001 011

010

100 110

111

= b1= b0



Postprocessing

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Single-qubit 
Measurement

X/Y/Z000

001 011

010

100 110

111

= b1= b0

• Use randomized Pauli measurement (classical shadow) on qubit  

to predict the fidelity  with the ideal 1-qubit state .

x

ω |ψb0,b1
⟩



Postprocessing

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Single-qubit 
Measurement

X/Y/Z000

001 011

010

100 110

111

= b1= b0

• Use randomized Pauli measurement (classical shadow) on qubit  

to predict the fidelity  with the ideal 1-qubit state .

x

ω |ψb0,b1
⟩

Average over  to get ω 𝔼[ω]



Question: Shadow Overlap
What is the analytical form of ?𝔼[ω]

Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation
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Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation

Quantum state Single-qubit 
Measurement

Z

ZZ
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Z

Z

Z X/Y/Z

 is an estimator for the fidelity with the ideal 1-qubit state ω |ψb0,b1
⟩



Question: Shadow Overlap
What is the analytical form of ?𝔼[ω]

 is an estimator for the fidelity with the ideal 1-qubit state ω |ψb0,b1
⟩

 𝔼[ω] =
1
n

n

∑
i=1

∑
b≠i∈{0,1}n−1

Tr(⟨b≠i|ρ|b≠i⟩
⟨b≠i|ψ⟩⟨ψ|b≠i⟩

Tr⟨b≠i|ψ⟩⟨ψ|b≠i⟩)



Question: Shadow Overlap
What is the analytical form of ?𝔼[ω]

 is an estimator for the fidelity with the ideal 1-qubit state ω |ψb0,b1
⟩

 

          

𝔼[ω] =
1
n

n

∑
i=1

∑
b≠i∈{0,1}n−1

Tr(⟨b≠i|ρ|b≠i⟩
⟨b≠i|ψ⟩⟨ψ|b≠i⟩

Tr⟨b≠i|ψ⟩⟨ψ|b≠i⟩)
= Tr(L|ψ⟩ ⋅ ρ) ∈ [0,1]



Question: Shadow Overlap
What is the analytical form of ?𝔼[ω]

 is an estimator for the fidelity with the ideal 1-qubit state ω |ψb0,b1
⟩

 

          

𝔼[ω] =
1
n

n

∑
i=1

∑
b≠i∈{0,1}n−1

Tr(⟨b≠i|ρ|b≠i⟩
⟨b≠i|ψ⟩⟨ψ|b≠i⟩

Tr⟨b≠i|ψ⟩⟨ψ|b≠i⟩)
= Tr(L|ψ⟩ ⋅ ρ) ∈ [0,1]

1
1 − (1/τ)… Spectrum 

of L|ψ⟩

|ψ⟩



• Consider an -qubit target state . 

• Choose a basis , where  is a bitstring. 

• Let  be the measurement distribution.

n |ψ⟩

|b⟩ b ∈ {0,1}n

π(b) = |⟨b|ψ⟩ |2

Relaxation Time

000

001 011

010

100 110

111

Boolean 
Hypercube



• Let  be the measurement distribution. 

• Consider a random walk on -bit Boolean hypercube.

π(b) = |⟨b|ψ⟩ |2

n

Relaxation Time
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001 011

010

100 110

111

Boolean 
Hypercube



• Let  be the measurement distribution. 

• Consider a random walk on -bit Boolean hypercube.

π(b) = |⟨b|ψ⟩ |2

n

Relaxation Time

000

001 011

010

100 110

111

Boolean 
Hypercube

= b



• Let  be the measurement distribution. 

• Consider a random walk on -bit Boolean hypercube.

π(b) = |⟨b|ψ⟩ |2

n

Relaxation Time

000

001 011

010

100 110

111

Boolean 
Hypercube

= b

= b′￼



• Let  be the measurement distribution. 

• Consider a random walk on -bit Boolean hypercube.

π(b) = |⟨b|ψ⟩ |2

n

Relaxation Time

000

001 011

010

100 110

111

With prob. 
π(b′￼)

π(b) + π(b′￼)

000

001 011

010

100 110

111

With prob. 
π(b)

π(b) + π(b′￼)



• Let  be the measurement distribution. 

•  is the time the random talk takes to relax to stationary .

π(b) = |⟨b|ψ⟩ |2

τ π

Relaxation Time

000

001 011

010

100 110

111

With prob. 
π(b′￼)

π(b) + π(b′￼)

000

001 011

010

100 110

111

With prob. 
π(b)

π(b) + π(b′￼)



Question: Relation to Fidelity

 is an estimator for the fidelity with the ideal 1-qubit state ω |ψb0,b1
⟩

 

          

𝔼[ω] =
1
n

n

∑
i=1

∑
b≠i∈{0,1}n−1

Tr(⟨b≠i|ρ|b≠i⟩
⟨b≠i|ψ⟩⟨ψ|b≠i⟩

Tr⟨b≠i|ψ⟩⟨ψ|b≠i⟩)
= Tr(L|ψ⟩ ⋅ ρ) ∈ [0,1]

1
1 − (1/τ)… Spectrum 

of L|ψ⟩

|ψ⟩

How does  relate to the fidelity ?𝔼[ω] ⟨ψ|ρ|ψ⟩



Question: Relation to Fidelity

 

          

𝔼[ω] =
1
n

n

∑
i=1

∑
b≠i∈{0,1}n−1

Tr(⟨b≠i|ρ|b≠i⟩
⟨b≠i|ψ⟩⟨ψ|b≠i⟩

Tr⟨b≠i|ψ⟩⟨ψ|b≠i⟩)
= Tr(L|ψ⟩ ⋅ ρ) ∈ [0,1]

1
1 − (1/τ)… Spectrum 

of L|ψ⟩

|ψ⟩

 implies  𝔼[ω] ≥ 1 − ϵ ⟨ψ|ρ|ψ⟩ ≥ 1 − τϵ
 implies ⟨ψ|ρ|ψ⟩ ≥ 1 − ϵ 𝔼[ω] ≥ 1 − ϵ



• The certification procedure applies to any . ρ

Certification

For an -qubit state  with relax. time , we can certify that 
 is close to  with  single-qubit measurements.

n |ψ⟩ τ
ρ |ψ⟩⟨ψ| 𝒪(τ)

Theorem 1



For almost all -qubit state , we can certify that  is close 
to  using only  single-qubit measurements.

n |ψ⟩ ρ
|ψ⟩⟨ψ| 𝒪(n2)

Theorem 2

• The certification procedure applies to any . 

•  is enough even when  has  circuit complexity.

ρ

𝒪(n2) |ψ⟩ exp(n)

Certification



What can we use state certification for?

Question: Applications



Example 1
Benchmarking

Certification enables us to 
test our quantum devices

What can we use state certification for?

Question: Applications



Benchmarking quantum devices

4-qubit Haar random state 
White Noise

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Benchmarking quantum devices

4-qubit Haar random state 
Dephasing Noise

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Benchmarking quantum devices

4-qubit Haar random state 
Coherent Noise

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Benchmarking quantum devices

4-qubit random structured state 
White Noise

|ψ⟩ = Uphase

4

⨂
i=1

|ψi⟩

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Benchmarking quantum devices

4-qubit random structured state 
Dephasing Noise

|ψ⟩ = Uphase

4

⨂
i=1

|ψi⟩

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Benchmarking quantum devices

|ψ⟩ = Uphase

4

⨂
i=1

|ψi⟩

4-qubit random structured state 
Coherent Noise

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Benchmarking quantum devices

12-qubit random structured state 
White Noise

|ψ⟩ = Uphase

4

⨂
i=1

|ψi⟩

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Benchmarking quantum devices

12-qubit random structured state 
Dephasing Noise

|ψ⟩ = Uphase

4

⨂
i=1

|ψi⟩

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Benchmarking quantum devices

|ψ⟩ = Uphase

4

⨂
i=1

|ψi⟩

12-qubit random structured state 
Coherent Noise

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Benchmarking quantum devices

20-qubit random structured state 
White Noise

|ψ⟩ = Uphase

4

⨂
i=1

|ψi⟩

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Benchmarking quantum devices

20-qubit random structured state 
Dephasing Noise

|ψ⟩ = Uphase

4

⨂
i=1

|ψi⟩

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Benchmarking quantum devices

|ψ⟩ = Uphase

4

⨂
i=1

|ψi⟩

20-qubit random structured state 
Coherent Noise

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 1
2n



Example 1
Benchmarking

Certification enables us to 
test our quantum devices

What can we use state certification for?

Question: Applications



Question: Certify  Learn↦

State ρ

External world

Given a parameterized family of 
states , 
 
how can we learn the  
closest to  from few single-
qubit measurements?

|ψ( ⃗x)⟩

|ψ( ⃗x⋆)⟩
ρ



Question: Neural quantum states

State ρ

External world

Given a trained neural network 
representation of , i.e., 
NN: . 

How to efficiently certify that 
the neural network is correct?

|ψ⟩
x ∈ {0,1}n ↦ ⟨x |ψ⟩ ∈ ℂ



Example 1
Benchmarking

What can we use state certification for?

Question: Applications

Certification enables us to 
test our quantum devices



State certification can be used 
to train/certify ML models, 

such as neural quantum states.

Example 2
Certify ML models

Example 1
Benchmarking

What can we use state certification for?

Question: Applications

Certification enables us to 
test our quantum devices



Training/Certifying Neural Q States

Neural 
Network 
for |ψ⟩

|b⟩ ⟨b|ψ⟩

Standard Neural Quantum State

Represent |ψ⟩



Training/Certifying Neural Q States

Neural 
Network 
for |ψ⟩

|b0⟩

|b1⟩

⟨b0|ψ⟩
⟨b1|ψ⟩

Relative Neural Quantum State

Represent |ψ⟩



Training/Certifying Neural Q States

Neural 
Network 
for |ψ⟩

|b0⟩

|b1⟩

Relative Neural Quantum State

Use NN  times 
to get 

n
⟨b|ψ⟩

Represent |ψ⟩

⟨b0|ψ⟩
⟨b1|ψ⟩



Training/Certifying Neural Q States

We consider learning a class of 120-qubit states with 
extremely high circuit complexity.



Training/Certifying Neural Q States

Certified using 
shadow overlap
Measurements

Few Repetitions

Predicting …

Quantum System

Local Observables

Entanglement
Entropy

2-point Correlations Hamiltonian

Possible Properties

Data Acquisition Phase Prediction Phase

Quantum Fidelity Entanglement
Witness

Unitary
Evolution
Random
Unitary Classical

Representation
X/Y/Z

Trained using 
shadow-overlap-based loss



Training/Certifying Neural Q States

We consider learning a class of 120-qubit states with 
extremely high circuit complexity.



Training/Certifying Neural Q States

We consider learning a class of 120-qubit states with 
extremely high circuit complexity.



Example 2
Certify ML models

Example 1
Benchmarking

What can we use state certification for?

Question: Applications

State certification can be used 
to train/certify ML models, 

such as neural quantum states.

Certification enables us to 
test our quantum devices



Question: Landscape

How do  vs  differ in the following states: 

 & ? 
 & ? 
 & ?

𝔼[ω] ⟨ψ|ρ|ψ⟩

| +n ⟩⟨ +n | | −n ⟩⟨ −n |
| +n−1 − ⟩⟨ +n−1 − | | −n ⟩⟨ −n |

| +n−k −k ⟩⟨ +n−k −k | | −n ⟩⟨ −n |

  𝔼[ω] =
1
n

n

∑
i=1

∑
b≠i∈{0,1}n−1

Tr(⟨b≠i|ρ|b≠i⟩
⟨b≠i|ψ⟩⟨ψ|b≠i⟩

Tr⟨b≠i|ψ⟩⟨ψ|b≠i⟩) = Tr(L|ψ⟩ ⋅ ρ) ∈ [0,1]



Example 2
Certify ML models

Example 1
Benchmarking

What can we use state certification for?

Question: Applications

State certification can be used 
to train/certify ML models, 

such as neural quantum states.

Certification enables us to 
test our quantum devices



Example 1
Benchmarking

Example 3
Optimizing circuits

To prepare a target state , 
we can optimize the circuit 

to max the certifier.

|ψ⟩

What can we use state certification for?

Question: Applications

Example 2
Certify ML models

State certification can be used 
to train/certify ML models, 

such as neural quantum states.

Certification enables us to 
test our quantum devices



Optimizing state-preparation circuit
n = 6 n = 50

n = 6 n = 50

Constructing an n-qubit MPS 
with H, CZ, T gates.



Optimizing state-preparation circuit

Training using Monte-Carlo 
optimization to prepare 

a 50-qubit MPS.

n = 50

n = 50



Applications

Example 1
Benchmarking

Shadow overlap  certifies 
if the state has a high fidelity

𝔼[ω]

Example 3
Optimizing circuits

What can we use this new certification protocol for?

State certification can be used 
to train/certify ML models, 

such as neural quantum states.

Example 2
Certify ML models

To prepare a target state , 
we can optimize the circuit 

to max the certifier.

|ψ⟩



Question: Ultimate Certifier

State ρ

External world

Can we efficiently certify 
any state  w/ few single-
qubit measurements?

|ψ⟩



Image credits: (Top left) https://www.energy.gov/science/doe-explainscatalysts (Top right) https://theconversation.com/as-
pharmaceutical-use-continues-to-rise-side-effects-are-becoming-a-costly-health-issue-105494 (Bottom left) https://news.mit.edu/2019/
ultra-quantum-matter-uqm-research-given-8m-boost-0529 (Bottom right) https://www.nature.com/articles/d41586-019-03213-z

Catalysts Pharmaceutics

Quantum devicesQuantum matter

• To accelerate/automate quantum science, it is critical to understand how 
to design better algorithms to learn in the quantum universe.

Conclusion

https://www.energy.gov/science/doe-explainscatalysts
https://theconversation.com/as-pharmaceutical-use-continues-to-rise-side-effects-are-becoming-a-costly-health-issue-105494
https://theconversation.com/as-pharmaceutical-use-continues-to-rise-side-effects-are-becoming-a-costly-health-issue-105494
https://theconversation.com/as-pharmaceutical-use-continues-to-rise-side-effects-are-becoming-a-costly-health-issue-105494
https://news.mit.edu/2019/ultra-quantum-matter-uqm-research-given-8m-boost-0529
https://news.mit.edu/2019/ultra-quantum-matter-uqm-research-given-8m-boost-0529
https://www.nature.com/articles/d41586-019-03213-z


Conclusion
• Powerful learners (humans/machines) have emergent capabilities that are 

inherently heuristics—unpredictable by first principle.

Theorists dreaming AI analyzingExperimentalists building



Conclusion
• How to design rigorous certification protocols to harness and validate 

these empirically powerful but heuristic emergent capabilities?

Theorists dreaming AI analyzingExperimentalists building



How can a future quantum AI 

learns models, 
extracts properties, 
makes predictions, 

about the external world?

Neuron

Molecule

Atom

Saturn
Virus

Blackhole

External world

Learning



When a future quantum AI 

learns models, 
extracts properties, 
makes predictions, 

better than us, how to certify it?

Neuron

Molecule

Atom

Saturn
Virus

Blackhole

External world

Certification



When a future quantum AI says it has 
found a new low-depth q. circuit for 
simulating electrons, 

how to certify/harness it rigorously?

Neuron

Molecule

Atom

Saturn
Virus

Blackhole

External world

Question: Simulation



When a future quantum AI says it has 
designed a new quantum algorithm 
with genuine quantum advantage, 

how to certify/harness it rigorously?

Neuron

Molecule

Atom

Saturn
Virus

Blackhole

External world

Question: Algorithm



When a future quantum AI says it has 
discovered a new state of matter, 

how to certify/harness it rigorously?

Neuron

Molecule

Atom

Saturn
Virus

Blackhole

External world

Question: State of Matter



When a future quantum AI says it has 
sensed axion dark matter, 

how to certify/harness it rigorously?

Neuron

Molecule

Atom

Saturn
Virus

Blackhole

External world

Question: Sensing



Long-term goals
1. Develop our understanding of learning to accelerate/automate science. 

2. Create certification protocols to validate/harness emergent capabilities.

AI imagination of itself learning and discovering new facets of our quantum universe


